
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1974

Applicability of buffered main memory to
SYMBOL-IIR like computing structures
Om Prakash Agrawal
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Agrawal, Om Prakash, "Applicability of buffered main memory to SYMBOL-IIR like computing structures " (1974). Retrospective
Theses and Dissertations. 6319.
https://lib.dr.iastate.edu/rtd/6319

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/6319?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This material was produced from a microfilm copy of the orignal document. While 
the most advanced technological means to photograph and reproduce this document 
have been used, the quality Is heavily dependent upon the quality of the original 
submitted. 

The following explanation of techniques is provided to help you understand 
markings or patterns which may appear on this reproduction. 

1.The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. 
This may have necessitated cutting thru an image and duplicating adjacent 
pages to insure you complete continuity. 

2. When an image on the film is obliterated with a large round black mark, it 
is an indication that the photographer suspected that the copy may have 
moved during exposure and thus cause a blurred image. You will find a 
good image of the page in the adjacent frame. 

3. When a map, drawing or chart, etc., was part of the material being 
photographed the photographer followed a definite method in 
"sectioning" the material. It is customary to begin photoing at the upper 
left hand corner of a large sheet and to continue photoing from left to 
right in equal sections with a small overlap. If necessary, sectioning is 
continued again — beginning below the first row and continuing on until 
complete. 

4. The majority of users indicate that the textual content is of greatest value, 
however, a somewhat higher quality reproduction could be made from 
"photographs" if essential to the understanding of the dissertation. Silver 
prints of "photographs" may be ordered at additional charge by writing 
the Order Department, giving the catalog number, title, author and 
specific pages you wish reproduced. 

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as 
received. 

Xerox University IMicrofilms 
300 North Zeeb Road 
Ann Arbor, Michigan 48106 



www.manaraa.com

% 
m 

75-3283 

AGRAWAL, Om Prakash, 1946-
APPLICABILITY OF BUFFERED MAIN MEMORY TO 
SYMBOL-IlR LIKE COMPUTING STRUCTURES. 

• \ 

lowa State University, Ph.D., 1974 
Engineering, electrical 

Xerox University IMiCrOfllmS, Ann Arbor, Michigan 48106 

I 

© Copyright by 
OM PRAKASH AGRAWAL 

1974 

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED. 



www.manaraa.com

Applicability of buffered main oesory to STMBOL-lIfi 

like computing structures 

by 

OB Prakash Agraval 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major: Electrical Engineering 

Approved 

In Charge of Major Work 

For the Major Department 

For the Graduate College 

Towa state Oniversity 
Ames, Iowa 

1974 

Copyright @ Dm Prakash Agrawal, 1974. All rights reserved. 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

ii 

I 

TABLE OF CONTENTS 

Page 

CHAPTER I. INTRODUCTION 1 

Problem Defiaitioa 5 

Specific Goals 5 

Significance of the Problem 6 

Approaches to Dissertation Study 7 

Significant Results 7 

CHAPTER II. HISTORICAL PERSPECTIVE AND RELATED 
RESEARCH 9 

Innovations for Speeding up the Memory 9 

Related Research 17 

CHAPTER III. APPLICABILITY OF BUFFERED MAIN MEMORY TO 
SYMBOL-IIR LIKE COMPUTING STRUCTURES 20 

Introduction to the SYMBOL-IIR Computing Structure 20 

Virtual Memory System of the SYMBOL-IIR 22 

Introduction to SYMBOL-IIR like Computing Structures 26 

Main Memory Organization of SYMBOL-IIR 
like Computing Structures 30 

Buffer Management and Organization of SYMBOL-IIR 
like Computing Structures 32 

Comments on Buffered System Organization 60 

CHAPTER IV. EXPERIMENTAL ANALYSIS AND RESULTS 62 

Introduction 62 

Controlling Factors 62 

Design of the Experiment 65 

Factors to be Analyzed and their Figures of Merit 68 



www.manaraa.com

iii 

Experimental Results 71 

Conclusion 108 

CHAFPEfi 7. COST PERFOBMASCE ANALYSIS 112 

Introduction 112 

Cost Analysis 114 

CHAPTER VI. COSCLUSION AND DISCOSSIONS 120 

ACKNORLEDGHENfS 125 

BIBLIOGRAPHY 127 



www.manaraa.com

1 

CHAPTER I. IHTRODOCTION 

The persistent demand for getting more performance for 

less cost has brought very rapid and profound changes la the 

speed of both the processors and the memory systems of com­

puter systems. Over the last few decades the overall memory 

speed has been Improved by a factor of 10 or 20 and the proc­

essing power has been consistently increasing at the rate of 

100 times per decade (32,33). In spite of technological 

growth in the field of both the processors and the memory 

systems, there has been a severe mismatch between the speed 

of the processors and the main memory. This gap of speed has 

caused the performance of the present day computer systems to 

be limited by the speed and the capacity of the memory 

system. 

In order that the performance of the computer system nat 

be limited by the memory, there has been a constant effort to 

bridge this gap of speed between the processors and the main 

memory. This constant effort has produced a tremendous 

impact on the growth of technology and has given birth to a 

variety of technological and architectural innovations. Out 

of all these innovations, the concept of "buffering", a term 

also synonymous with "cache", has been found to be 

tremendously attractive and appealing. This concept of 

"buffering", implemented for the first time on a production 

system in 1968 in the IBM 360/85, a large scale computer 
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system, gave the user a machine which vas capable of operat­

ing at the speed of the processor, with the cost of the slow 

backing store, and whose performance was no longer limited by 

the speed of the main memory (24). 

The philosophy behind the concept of "buffering" is to 

use a quite fast and relatively small memory in between the 

processor and the main memory. Serving as a transparent 

bridge between the processor and the main memory, this "buf­

fer" gives the illusion of a very large main memory operating 

at the speed of the "buffer", to the users. Ihe concept of 

"buffering" has been found to be immensely attractive essen­

tially because of two reasons—programming and economics. 

The programming reason is that most of the conventional 

users' programs tend to follow the principle of "locality", 

that is at any inst&nt of time the addressing pattern of a 

program tends to be localized; the economical reason being 

that technology of today has not been able to provide a 

faster, larger and cheaper memory system operating at the 

speed of the processor. The memory cost seems to be 

inversely proportional to the speed and directly proportional 

to the capacity. Hence, larger and faster memories tend to 

be quite expensive. 

"Buffering" tends to provide a localized subset of in­

formation at a faster speed and cheaper price to the proces­

sor and provides an illusion of a large main memory operating 
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at the speed of the buffer. 

As long as these two characteristics are encountered the 

approach of "buffering" would seem to be the most effective 

solution of matching the speed between the processor and the 

main memory. For these reasons, "buffering" has been found 

to be immensely cost effective in large scale computer 

systems. Also, because of conceptual simplicity, the 

buffered memory approach has even been tried for mini­

computers and has been found to be cost performance effec­

tive. 

However, so far the approach of "buffering" has been 

tried for mostly conventional, software dominated von Neumann 

machines, and the "buffer" has been provided for the Central 

Processor only—which is supposed to be the most 

indispensable processor in the conventional computer system. 

Recently, the consistent decline in the cost of hardware 

components (due to rapid progress in technology) and the con­

sistent increase in the cost of software has led the computer 

architects to think of designing highly hardware oriented 

decentralized computing structures. The STHBOL-IIR computer 

is one result of this new hardware/software analysis. 

The SYHBOL-llR computing structure can be characterized 

as a radical departure from conventional software dominated 

von Neumann machines. It is a highly decentralized system, 

organized as a network of dedicated or non-homogeneous or 
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autonomous processors (also known as Functional Units) each 

designed to do certain specific tasks. Besides this feature, 

most of the functions like memory management, system 

supervision, etc. are done in hardware (36,38); Even though 

it is a novel architectural milestone in the history of com­

puter systems, the SIBBOI-IIR computer has a speed disparity 

between its processors and the main memory and between the 

main memory and the paging disk. These gaps make the system 

performance intuitively bounded by the speed of the memory 

system. 

This thesis is concerned with the first of the gaps. If 

speed improvement is desired for the main memory, then there 

are two alternatives: 

1. Either replace the whole main memory by a faster 

memory or 

2. Use a buffered memory approach to improve the per­

formance. 

The second alternative is better than the.first one be­

cause the second approach would tend to achieve about the 

same performance as the first approach with much less cost. 



www.manaraa.com

5 

Problem Definition 

The tremendous success of the "cache" approach with con­

ventional computing structures (both large and mini) leads 

one to think that it would work for any kind of computing 

structure. Even though one would think of using the same ap­

proach in unconventional machines, no one has attempted so 

far to illustrate the designing of buffered memory systems 

for unconventional structures. Various interesting questions 

which are yet to be answered are: 

1. Whether a "buffer*' approach would be cost-

performance effective also for an unconventional 

architectured computing structure. 

2. Whether the special architectural organization of 

the unconventional machine would have any effect at all on 

the organization and the management of the "buffered" memory, 

and if so, what whould be the optimum "buffer" configuration 

and 

3. If buffering is the best solution for improving 

the speed of an unconventional machine, how should it be or­

ganized and managed? 

Specific Goals 

Specific goals of this dissertation which are further 

elaborated later are; 

1. To analyze the effect of the architectural organi­

zation of an unconventional computing structure upon the 
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design and management of its "buffered" memory. 

2. To study whether in a multidedicated, non-

homogeneous time-sharing computing system the buffer should 

be organized as a homogeneous unit or as a heterogeneous 

unit. 

3. To study whether the buffer should be partitioned 

into equal sizes for different classes or whether the amount 

of buffer allotted to a particular class should vary depend­

ing upon its need and demand. 

4. To study the overall organization and management 

of "buffered" memory. 

5. To carry out a cost, speed and performance analy­

sis for various buffer sizes, and various algorithms to see 

whether or not it is cost effective. 

Significance of the Problem 

The primary significance of this work is to provide ad­

ditional insight into and shed additional light on several 

key problems in the design and management of "buffered main 

memory" for highly unconventional computing structures. The 

SYHBOL-IIR computer, because of its physical existence and 

availability serves only as a model or a vehicle. Emphasis 

has been placed on computing structures, having the similar 

major architectural philosophies as that of STSBOL-llB, and 

the attempt has been made to make the solution as general as 

possible. The chief significance of the problem could be 
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stated as follows: 

"Given a computing structure like STHBOL-^IIR how 

should the buffered memory be designed and managed so that it 

is efficient, cheap and flexible enough?" 

Hence, the title of the dissertation is "Applicability 

of buffered main memory to SïHBOL-IIR like computing struc­

tures" and not "Applicability of buffered main memory to the 

SYMBOL-IIR computer". 

Approaches to Dissertaion Study 

The problem has been approached as follows: 

1. A study of the virtual memory system and the 

architectural organization of the SYMBOL-IIR and SYMBOL-IIR 

like computing structures and its effect on the design and 

management of the "buffered" memory is undertaken. 

2. A program mix to generate suitable address se­

quences for computing the effective hit-ratio for various 

buffer configurations and algorithms, by simulation, is se­

lected. 

3. Finally a cost performance analysis of buffered 

system for SYMBOL-IIR like systems is made. 

Significant Results 

Three alternative ways of buffering SYMBOL-IIR like com­

puting structures are investigated in detail. These three 

ways are—a buffer for the whole system, buffers for the ter­

minals, or buffer for each dedicated processor. It is shown 
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that allocation of dedicated, sharable buffer space to each 

dedicated processor results in a very cheap vay of improving 

performance significantly. 

It is also demonstrated that besides the principle of 

"locality", the architectural organization of the whole 

system affects tremendously the design and management of the 

whole buffered memory system. 

It is also shown that as long as large high speed memo­

ries are significantly more expensive than slower ones and 

the principle of "locality" is observed for for most of the 

users programs, buffering is the cheapest way for improving 

performance—even for highly unconventional computing struc­

tures like SÏHB01-IIH. 
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CHAPTER II. HISTORICAL PERSPECTIVE AND RELATED RESEARCH 

Innovations for Speeding up the Haaory 

Various approaches have been implemented in various 

systems to reduce the effective access time for data and in­

structions to less than the fall memory cycle time. 

The approaches which are more common are the use of: 

1. Multiple interleaved memory banks with single 

entry points, 

2. Multiple interleaved memory banks with multiple 

entry points, and 

3. The use of scratch pad 

One of the major disadvantages of organizing memory as a 

single module consisting of a homogeneous collection of 

addressable storage is that it imposes a speed limitation, 

particularly in high speed systems, because a single module 

is internally a single bus scheme, that is only one access 

can take place at a time. Also, when the single module is 

serving a request, all other requests for it have to be 

locked out thus resulting in a large delay. Hence, large 

systems have attempted to reduce memory delays by dividing 

total storage into banks or modules of storage where each 

bank now contains a subset of the memory addresses. The 

partitioning of memory into several banks allows all the 

banks to operate simultaneously, delivering words to 

requestors (processors) asynchronously, without much lock out 
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or interference, since each bank can still serve only one 

request at a time, lock out can still occur when the requests 

contend for access to the same bank. 

The effectiveness of banking memory therefore depends in 

large measure on the distribution of addresses being generat­

ed by asynchronous units in the system, and also on the 

ability of the storage control system to queue requests on 

the busy modules. 

The banking organization could be classified as either 

"high bit" banking or "low bit" banking depending upon wheth­

er the selection of a memory bank depends upon the high order 

or low order bits of an address. High order banking sort of 

partitions memory functionally. This scheme was implemented 

in Univac 1107 and 1108 where memory was sort of divided into 

I (Instruction) and D (Data) banks. Also known as FIFO and 

UFO organizational structure, this was used in RCA*s BIZHAC 

computer. The LIFO store technique was also employed in the 

Aeroneutronic Logic Evaluator, Burroughs 35000, the English 

Electric KDF-9 and the Ferranti Atlas computers. 

Low order bit banking, also known as conventional inter­

leaving, arranges the address structure so that adjacent 

words are stored in adjacent modules. Each independent 

module contains its own address decoding, driving circuits, 

data read out sense hardware and data register. By enabling 

multiple accesses to proceed concurrently storage bandwidth 
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is increased. 

The number of modules that can operate concurrently is a 

measure of the speed improvement over a singla module system. 

The depth of interleaving required to support a desired 

concurrency is a function of the storage cycle time, the 

processor memory request rate, and the desired effective 

storage cycle time. 

Multiple interleaved memory banks with multiple entry 

points is the scheme of interleaving so that different memory 

modules can be accessed from different entry points. These 

different entry points could be connected to separate proces­

sors in a multiprocessing system. Nov, the processors 

communicate with the memory through different entry points, 

through different communicating address and data registers. 

The technique of scratch pad 

Another approach of improving the performance of memory 

systems is the use of high speed control or scratch pad memo­

ries. This approach uses a small number of registers which 

are used to form a very small high speed memory and are used 

for storing temporary or intermediate results, frequently 

used data, constants and short subroutines which need to be 

iterated. 
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Pitfalls of the above approaches and the motivations for the 

bttffered memory systems 

Efforts such as that of pipelining (increase of overlap) 

greater local storage buffering (look ahead), multiple pro­

gramming, parallel processing, deeper storage interleaving, 

more sophistication in the handling of branches, virtual mem­

ory, time-sharing and other Improvements in the processors 

have been nice technological innovations for improving the 

performance of the computer system. However, all these at­

tempts are only partially successful in bridging the gap be­

tween the speed of the processor and that of the main memory, 

and in making the computer performance not memory bounded. 

One of the most important ingredients of a high 

throughput machine is to provide it with a very large main 

storage capacity, preferably operating at the speed of the 

processor, so that the machine will not be bounded by the 

speed of the memory and the processor could then issue a mem­

ory request at each and every processor cycle. However, it 

has not been feasible to provide a large main storage with a. 

cycle time commensurate with the processor speed. Fastest 

memory devices are the most expensive per bit storage and the 

slowest memory devices are the cheapest per bit storage. 

Because of these cost-speed trade-offs all the previous 

attempts of matching the gap between the processor speed and 

main memory speed has had resulted in a 
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microsecond/millisecond multilevel hierarchical virtual memo­

ry storage system, even though it was realized that to match 

the gap perfectly a nanosecond/microsecond hierarchy is the 

only solution. 

This concept of nanosecond/microsecond hierarchy is 

nothing new. Its implementation had not been feasible only 

because of the lack of a suitable technology. In fact as 

early as 1962, Bloom, Cohen and Porter (6) had proposed a 

technique known as "Look aside" memory to improve the logic 

to memory speed ratio by the use of an associative memory. 

Lee had tried to simulate the concept of implementing "Look 

aside" memory and found that by using an associative memory 

of about 256 words of 100 nanosecond cycle time, an effective 

cycle time of about 350—400 nanoseconds could be obtained in 

a memory system—whose main memory cycle time was 1 

microsecond (21, 22,23). Wilkes, in 1965, had proposed a sim­

ilar concept like this as a "slave" memory, by proposing a 

fast core memcry acting as a slave to a slower core memory in 

such a way that in practical cases the effective access time 

was nearer to that of the fast memory than to that of the 

slow memory (44) . 

This concept of nanosecond/microsecond hierarchy was 

also implemented in embryonic form in other computers like 

Ferranti Atlas (20) and ETL-Hk-6 (39). In addition to the 

main immediate access stores of ferrite cores. Atlas had also 
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several thousand words of an entirely novel type of storage 

to which access was extremely fast (0.2 microsecond compared 

to that of 0.75 microsecond of ferrite core). This store 

consisted of a wire mesh with small ferrite plugs inserted in 

the spaces, the contents of the store being determined by the 

presence or the absence of the plugs. However, this was es­

sentially used as a read-only storage and used essentially 

for storing subroutines and a large number of analytical 

functions only. 

ETL Mk-6 also used a memory hierarchy of 3 levels 

consisting of a drum, core, and a tunnel diode memory of 250 

nanosecond cycle time. The fastest memory was partitioned 

into a program stack, arithmetic stack and index registers— 

out of which the latter two only were accessible to the pro­

grammer. The idea of program stack was essentially to con­

tain spaces for short loops. 

All these techniques had been proposed and implemented 

in embryonic form only in certain computers. They had not 

been implemented in any large scale computer system because 
• t 

of lack of suitable technology. With the advancement of 

technology and with the availability of monolithic memory 

technology, the nanosecond/microsecond hierarchy was imple­

mented for the first time in the IBM 360/85, a large scale 

computer system, in 1968 and was termed as Gcache" system. 

In a cache based computer system, a fast and small memory 
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known as cache, interposed between the Cental Processor and 

the main memory, serves as the transparent bridge between 

their speeds. It is transparent in the sense that it is 

invisible to the user that is sort of hidden from him (Cache 

means hidden), and hence is not addressable by him. However 

its purpose is to make available to the processor, the pool 

of information currently being needed by it. However as the 

buffer memory is quite small it can't hold a large amount of 

information. The "cache" gives the illusion of having a 

large main memory operating at the speed of the "cache". 

Hence the processor tends to operate with a mamory of cache 

speed but with a cost of that of main memory. This configu­

ration has analogies with other systems employing memory hi­

erarchies such as paged virtual memory systems. In contrast 

with this latter, however 

1. A cache based memory system has a hierarchy of 

nanosecond/microsecond level, where as a paged virtual memory 

system has microsecond/millisecond hierarchy. 

2. Cache deals with smaller blocks of data. 

3. Cache provides a smaller ratio of memory access 

times (5 or 10 to 1 rather than 100 to 1) and because of this 

characteristic, a processor remains idle (that is does not 

switch to another task) while blocks of data are being trans­

ferred from main memory to cache and 

4. A cache based system enhances the effective speed. 
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where as a paged virtual memory system tends to enhance the 

apparent size of the memory. 

The reason cache memory works so nicely with a conven­

tional computer system architecture is essentially one of 

programming—generally users programs tend to follow the 

principle of "locality", that is addressing pattern of a pro­

gram is not distributed uniformly through the whole memory 

capacity, but at different intervals of time it tends to be 

localized to a particular subset of memory. Ihis principle 

is known as "locality of reference". Usually programs tend 

to have two kinds of locality of reference--"spatial locali­

ty" and "temporal locality" (25). This "locality of refer­

ence" principle illustrates that if a block of words is 

brought from main memory to cache, then the probability of 

words in cache to be used next by the program are very high 

and then they would be accessed at cache memory speed instead 

of the main memory speed. This property has had significant 

impact upon the architectural design of computer systems. 

This very principle has given birth to the concept of the 

"Working Set" model of program behaviour (11) and also to the 

principle of paging in virtual memory systems. 

Paged virtual memory systems tend to achieve the speed 

of main memory at the cost of the auxiliary memory, whereas 

cache memory systems tend to achieve the speed of cache memo­

ry at the cost of the main memory and the auxiliary memory. 
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Belated Research 

Trying to implement a "buffer" memory for a large scale 

computer system, for the first time, Liptay shoved that a 

"cache" memory of 16K bytes of storage (extendible to 24K 

bytes or 32K bytes) and of 80 nanosecond cycle time, operat­

ing vith a main memory of 512K to 4096K bytes and cycle time 

of 1.04 microsecond, was equivalent in performance to 81% of 

the performance (in average) of a memory system consisting of 

512K to 4096K bytes operating at the "cache" speed (24). 

"Great effort and thousands of hours of machine time have 

been expanded in proving the feasibility of a buffer 

technique for the IBM system/360 model 85" (10). Since its 

inception in 360/85, cache memory has been used in 360/195, 

370/155, 165 and 195 models, and there have been numerous in­

vestigations for the applicability and design considerations 

of buffered memory systems for various kinds of computer 

systems. 

Conti (10) and Mattson et al. (27,28) have proposed and 

developed various techniques for evaluating hierarchical 

storage systems (including high speed buffer storage) and 

their system effectiveness. The stack algorithm proposed by 

Mattson et al. (27,28) can be used essentially for evaluating 

variable class, variable page size, multilevel memory 

systems, ârora and Wu (1) have tried to study the perform­

ance of a cache memory system by analyzing statistical 
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quantification of instructions and operand traces. They have 

also tried to investigate parameters which could alio* simu­

lation of various non-existing environments. Hattson (26), 

Kaplan and Binder (19), and Meade (29,30) have conducted ex­

tensive studies on the effects of buffer size and block size 

on the hit ratio for a variety of computing environments. 

Heade (31) has discussed about designing various parameters 

of a buffered memory system in an excellent article in Elec­

tronics. Bell and Casaseat (3,4) tried to investigate the 

applicability of buffered memory systems for mini-computers 

and came to the conclusion that a performance gain of 5 or 

more can be achieved at the cost increase of 2 or less for 

PDF 8/E computer systems. Pohm et al. (34,35) have tried to 

investigate the applicability of buffered memory systems for 

both large and mini-computer systems, and have demonstrated 

that buffering a 500K bytes main memory would result in a 

300% improvement in performance with a cost increase of 8%. 

Bersamian and DeCegama have studied system design considera­

tions of cache memories on a multiprogramming system and have 

come to a conclusion that "hit probability may significantly 

decline in multiprogramming systems with high program 

switching rate. &s a result the performance afficiency of 

cache may be negligible" (5) . 

In a nutshell, in all the studies taken so far buffering 

seems to be immensely cost-performance attractive for both 
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large and mini computer systems. However most of the re­

search for buffering has been concentrated on conventional 

computing systems, and buffer space has been provided for the 

Central Processor only. As far as the author knows, only in 

a super Japanese computer an effort has been made to provide 

separate buffer area for the basic processor and the I/O 

Processor (of the Central Processor) (9). The speed and 

capacity of the buffers for these two different processors 

are however different. 

One of the major goals of this dissertation is to inves­

tigate the applicability of separate dedicated buffer space 

for different dedicated processors of a multidedicated proc­

essors computing system. 
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CHAPTER III. APPLICABILITY OF BOFFEBBD MAIN MEMORY TO 

SYMBOL-IIR LIKE COMPUTING STRUCTORES 

Introduction to the SYMBOL-IIR Computing Structure 

Before considering the applicability of buffered main 

memory to SYMBOL-IIR like computing structures it is a good 

idea to discuss briefly the existing SYMBOL-IIR computing 

system. The SYMBOL-IIR computing system is a time-sharing 

virtual memory computer system, consisting of 7 dedicated or 

autonomous processors all sharing the same virtual memory 

(Fig. 1) • The access to virtual memory of thsse dedicated 

processors is controlled by another dedicated processor 

called the Memory Controller. The purpose of this processor 

is to allocate memory access dynamically to different proces­

sors on a priority basis. Any time a processor needs access 

to main memory, it raises its priority line tailing Memory 

Controller that it needs access to memory. If it happens to 

be the processor having highest priority trying to access 

memory at that time, the access to memory is granted. Howev­

er, if other processors with higher priorities than it are 

also trying to access the memory at the same time, then it 

has to wait until all the requests for higher priority proc­

essors are satisfied. The priorities of these different 

dedicated processors are fixed, that is they are static and 

do not vary dynamically. The priorities are assigned on the 

basis of relative importance of each dedicated processor. 
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The STHBOL-lIB computing structure is a radical 

departure from conventional software dominated von Neumann 

machines. It is a highly hardware oriented machine, and its 

major architectural philosophy is to implement, in hardware, 

a variety of features which are usually implemented by soft­

ware in conventional computing structures. Some of these in­

teresting features are dynamic memory allocation and reclama­

tion, dynamically variable field lengths and structures, au­

tomatic memory management and time-sharing supervision, 

direct symbolic addressing, alpha numeric field manipulation, 

direct text editing, etc. (3 6,38). 

Virtual Memory System of the SYHBOL-IIR 

In a buffered virtual memory system, the architectural 

organization of the virtual memory system has tremendous 

impact upon the organization of its buffered memory. Hence 

before discussing the buffered virtual memory system of 

SYHBOL-IIR like computing structures, the virtual memory 

system of the STHBOL-IIB computing system, and S' » of its 

characteristics are discussed. Virtual memory system of the 

existing SYHBOL-IIR computer is organized as a two level 

paged memory system--the first level being a core memory 

consisting of 32 pages, and the second level being a disc 

with total capacity of 800 pages. Out of 32 pages of 

physical core one page is reserved for system usage and is 

known as the system header page, and three pages are used for 
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terminal header information. The rest of the pages of the 

core are used as virtual data pages by different processors 

for different terminals (36, 38) (Fig. 2). 

Page organization 

Each virtual page is 25 6 words, and is organized as 32 

groups, where one group is equal to 8 words and is the basic 

quantum of memory space allocated dynamically by the memory 

controller (37,45). Since memory space is allocated dynami­

cally, the groups allotted to a processor by the memory 

controller can cross logical page boundaries, and since ex­

tensive list manipulation is done in the system to keep track 

of virtual memory space, each group has a group link word as­

sociated with it. The group link word contains information 

about the forward link of the present group to the next group 

and also the backward link of the group. These links are 

maintained dynamically by the memory controller. In SYMBOL-

IIR group link words of a group are maintained in the same 

virtual page as the group itself. Choosing the group size to 

be 8 words and also having the group link words in the same 

page makes each virtual data page of SYMBOL-IIR look like 

(Fig. 3) . The virtual data page has 28 groups of data, 28 

group link words and 4 words of page header information. 
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Page header information contains information about who owns 

the particular virtual page, which next virtual page it is 

linked to, whether or not space is vacant in the page and how 

much of it etc. This information is used extensively by the 

Memory Controller for dynamic memory allocation and reclama­

tion. 

Some_çharaçteristiçsjof_the_Memorz_S%stemjof_SYHBqL2lia 

One important characteristic of the SïHBOL-IIB computer 

structure is the segregation of virtual memory pages accord­

ing to their use. All virtual memory pages of SïHBOL-IIR are 

used by different dedicated processors for different termi­

nals, and these are essentially used for one of three pur­

poses. The pages are used for source page lists (the list of 

pages used for source string only), object page lists (the 

list of pages used for object string only) or for name-table 

and data page lists (the list of pages containing the name-

table and data). 

Another important characteristic of the STHBOL-IIB com­

puter structure is the principle of "no-sharing" of informa­

tion by different terminals, that is each terminal is the 

sole and exclusive owner of its three page lists once it 

aquires them from the system, until it releases them to the 

system to be used for some other purposes. However, a termi­

nal needs the service of various dedicated processors for the 

completion of its job. Hence, even though no sharing of in-
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formation between terminals is allowed the processors share 

information belonging to a terminal. These philosophies have 

very profound effects on the techniques of buffer space allo­

cation as mentioned later. 

Since we are mostly concerned with SYMBOL-IIR like com­

puting structures, we do not intend to answer, here, ques­

tions like why sharing of information between terminals was 

not allowed in the system. We just consider systems which 

have similar major characteristic philosophies as that of 

STMBOL-IIR. 

Introduction to STHBOL-UR like Computing Structures 

SÏHBOL-IIB like computing structures could be 

characterized as computing structures having similar major 

architectural philosophies as that of the SYMBOL-IIR comput­

er, and as far as the problem of applicability of buffered 

main memory to STHBOL-IIR like computing structures is con­

cerned, they could be viewed as in Fig. 4. 

The virtual memory system of a computing structure like 

SYMBOL-IIR could be characterized as a paged memory system 

consisting of two levels of memory—the first level 

consisting of relatively fast core of H number of pages and 

the second level consisting of a drum or disc of N number of 

pages (Fig. 4). Let us call the core cycle time of the first 

level or main core memory as Tmcyc and the auxiliary store 

access time as Taux. For SYMBOL-IIR like computing struc-



www.manaraa.com

27 

Auxiliary Memory 

Or 

Backing Store 

(Taux) 

Taux Tmcyc 
M Pages 

Virtual Memory 

2 Level 

Main Memory 
P Pages 
(Tmcyc) 

Tmcyc x Tpcyc 

Another 
Dedicated 

Processor 

( Memory Controller ) 

Dedicated 

Processors 

pcyc 

n Terminals 

Fig. 4. SÏHBOL-IIR like Computing Structures (2 level) 



www.manaraa.com

28 

tures Tncjc is in the range of microseconds and Taux is in 

the range of milliseconds. So, Taux is about 1000—5000 

times that of Tmcyc, that is there is a speed disparity of 

about 1000—5000 between the first level and the second 

level. 

Let all the processors of SïMBOL-IIR like computing 

structures have the same processor cycle time and let this be 

denoted by Tpcyc. For a SYHBOL-IIR like computing structure, 

there is a speed discrepancy of about 10 between the proces­

sor cycle time (Tpcyc) and the main storage cycle time that 

is Tpcyc = 10 Tmcyc. 

Need for buffering 

In SYHBOL-IIB like computing structures the main fast 

memory serves as a buffer for the relatively slow auxiliary 

memory. However, as noted before, there is a wide speed dis­

crepancy between the two memory speeds, and also there is a 

big speed disparity between the basic processor cycle time 

and the main memory cycle time. Even though the virtual mem­

ory system tends to give an illusion of infinite transparent 

main storage to different users, there is a big difference in 

the effective speeds between the hits (i.e. the time when the 

required page is in the main memory) and the misses (i.e. the 

times when the required page is not in the main memory and 

has to be brought from auxiliary memory) This might involve 

a transfer of a page from core to auxiliary memory first be­
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fore the required page is brought from the auxiliary memory 

to main memory. This speed gap between the two levels of the 

memories and between the processors and the main memory of 

SÏM60L-1IB like computing structures make the speed of the 

whole computer system inherently bounded by the speed of the 

memory. 

For STHBOL'IIB like computing structures the ideal case 

would be to have one large storage unit with cycle time 

(Tmcyc) equal to Tpcyc. The processors can then issue stor­

age requests on any and every processor cycle. However, be­

cause of the cost/speed trade-off considerations it is not 

physically feasible to provide a storage system in 

commensurate with the processor cycle time. The ideal solu­

tion of achieving greater speed with minimum cost is to pro­

vide buffering by using two memories—one called the buffer 

or cache, being small, cheap and fast enough to match the 

speed of the processor and situated physically very close to 

the processors for quick accessibility and the other 

relatively cheap, and slow main memory but able to transfer a 

large amount of data into the small buffer main memory in a 

single cycle. 

Hence, the buffered virtual memory system of STHBOL-llB 

like computing structures could be thought of as a three 

level memory system—the first level being the very fast, 

small capacity buffer, the second level being relatively 
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slow, medium capacity main memory, and the third level being 

the slowest, very large capacity backing store (Fig. 5) . 

Main Memory Organization of SYMBOL-IIE 

like Computing Structures 

As mentioned before, one of the important philosophies 

of S7HB0L-IIB like computing structure virtual memory system 

is the segregation of virtual memory pages according to their 

use. also each virtual page sort of consists of two parts— 

data groups and data group linking words. One of the reasons 

for providing group linking words and page header words along 

with data groups in the same page is the simplicity of the 

address translation scheme. 

However, there is no reason why main memory could not be 

segregated into different modules. Hence, trying to retain 

the same basic concepts of STHBOL-Ilfi and at the same time 

partitioning the main memory, let us organize the main memory 

of SÏMBOL-IIB like computing structures as follows: 

The main memory is thought of as partitioned into three 

separate major modules—calleù data module, data linking 

module, and system and terminal header module respectively. 

The System and terminal header module could contain es­

sentially the system and terminal header information like the 

first 4 pages of the STHBOL-UB computer, since these pages 

have to be resident in core most of the time, segregating 

them in a separate module helps to access them in parallel 
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with other information. Also, since it would not be too big, 

it could be designed as a separate fast memory modale. 

The data linking module will be the module containing 

the page header words and data group link words of all the 

virtual pages of the system. The main reason for this 

segregation is to achieve simultaneously almost all the im­

portant information needed by different processors and to 

achieve more parallelism. It is thought that segregating 

these data into different modules and providing the capabili­

ty of accessing all the data at the same time can reduce the 

overall computation tisse and minimize the number of accesses 

to each module. 

Data module (s) will be module (s) containing only data. 

Hence in essence the whole main memory system of STHBOL-IIR 

like computing structures would look as that in (Fig. 6). 

Buffer Management and Organization of STMBOL-IIB 

like Computing Structures 

If a buffer is to be provided for SYHBOL-IIR like com­

puting structures, an important question one has to answer is 

how the buffer should be organized and managed. 

An efficient scheme of implementing a buffered memory 

system for SYMBOl-IIH like computing structures involves ef­

ficient design of the following strategies: 

1. Buffer space allocation strategies 

2. Buffer space loading or placement strategies 
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3. Buffer space replacement strategies and 

4. Buffer address translation strategies. 

The design of these four strategies should be approached 

with the goal in mind that the buffer should be cheap, small, 

fast, and flexible enough, and yet should maximize the suc­

cess references to the buffer. 

If technology of today could provide an inexpensive, 

large, and fast memory (serving as a buffer) then the whole 

problem of worrying about designing these efficient strate­

gies would not be that important. 

Basis for buffer space allocation 

In trying to design an efficient space allocation strat­

egy for SYHBOl-Iia like computing structures, one should give 

some thoughts to the following guestions: 

1. How the buffer space should be allocated on size 

and associativity considerations, 

2. Whether it should be allocated on a physical or 

functional basis, 

3. Whether it should be organized as a homogeneous 

unit or it should be organized as heterogeneous units, and 

4. How should it be partitioned? Should it be divid­

ed into a fixed or variable number of classes? and, if so, 

how the partitioning of buffer space should be done for dif­

ferent classes, that is should all classes have equal buffer 

space or should the amount of buffer space allotted to a 
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class vary depending upon its need. 

Let us discuss these problems in some detail. 

Size and associativity consi derations 

Based on the size and associativity considerations one 

might approach to allocate buffer space for SÏBB0L-1IB like 

computing structures in any of the following three ways: 

1. Fixed page size, variable associativity 

2. Fixed or variable number of blocks, fixed 

associativity and 

3. Fixed number of blocks, variable associativity. 

Fixed page size, variable associativity Taking the 

approach as is used in conventional computers, one approach 

might be to organize the buffer space as consisting of a 

fixed number of pages, the page size being fixed and same as 

the page size of the backing store. The buffer would appear 

now as an anonymous pool of page frames, where each page 

frame of it could be associated with any virtual page of the 

backing store (variable associativity) (Fig. 7). However, as 

the information would be transferred between main memory and 

the buffer in blocks instead of a page (a block being some 

fraction of a page), this approach will need some sort of 

validity bits to be associated with different blocks of the 

page. This approach works fine for conventional machines and 

has been implemented in various machines (24). However, for 

SYMBOl-IIE like computing structures this approach does not 
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seem to be too exciting, because in STHBOL-IIB like time­

sharing computer structures, virtual pages are segregated ac­

cording to their usage and each terminal needs 3 page lists 

for the execution of its job. Also, terminals are not al­

lowed to share each others information; and since buffering 

has to be provided for the system operating in a time-sharing 

environment, the need for providing sufficient buffer space 

to obtain a better hit-ratio might result in the need for a 

buffer of quite large size (larger than the present core of 

SYHBOL-IIB) thus making it quite expensive. 

Eixed.o&_varia&ie_blgGks_sizei_fixed_assosia&ivit% 

Because terminals are not allowed to share each other's in­

formation the approach of fixed pages and fixed sizes with 

variable associativity loses much of its charm. Hence an­

other approach might be that of buffering a fixed or variable 

number of blocks per page with fixed associativity (Fig. 7) 

i.e., associate these particular blocks with the particular 

virtual pages only. Here the idea is to allocate a certain 

amount of buffer space for each virtual page (unlike the 

whole page as in the previous approach). The total buffer 

space now would consist of m * H blocks, where virtual memory 

size is N pages (each page being of the size of Q blocks) and 

m is an integer with a/Q << 1. How the associativity of each 

block is fixed or static with a virtual page and does not 

vary with time. If m is equal to 1 then it results in the 
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simplest type of buffer organization, there being no need for 

the priority update list or chronology (41). Any time a par­

ticular block belonging to a certain virtual page is not 

found in the buffer, then the corresponding block of that 

virtual page is replaced by the new required block* There is 

no problem of deciding which block is to be replaced. Howev­

er, if m > 1 then there has to be a priority list associated 

with the blocks of each virtual page. In casa of a miss, the 

block having the lowest priority amongst all might be re­

placed. 

Even though this approach seems conceptually simple, 

buffer size tends to be proportional to virtual memory size. 

Increasing the size of virtual memory would result in an in­

crease of buffer size (Fig. 8). 

Fixed number of blocks, variable associativity An­

other approach which would tend to reduce the problem of buf­

fer size being proportional to virtual memory size is to 

design the buffer to be of fixed size, consisting of a fixed 

number of blocks, where the associativity of a particular 

block with a virtual page is varied dynamically. How each 

virtual page does not have a fixed amount of buffer space for 

it, but there is a fixed amount of buffer space for a vari­

able number of virtual pages. Hence, based on size and 

associativity considerations, this approach of small and 

fixed buffer size (and hence economical) with dynamic block 
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associativity seems to be the right approach for SYMBOL-IIE 

like computing structures (Fig. 8). 

Physical and functional considerations 

STHBOL-IIB like computing structures consist of a 

network of multidedicated or non-homogeneous or special pur­

pose processors. The whole system is organizad as a network 

of master-slave processors, and each processor is 

indispensable to the system. A terminal needs the service of 

these dedicated processors, for various amounts of time, for 

the execution of its job. Hence, after deciding the size and 

associativity considerations, another parameter which seems 

to be very important is to decide how the partitioning of 

buffer space should be done, that is should buffer space be 

provided physically for different existing physical proces­

sors or should buffer space be provided for existing termi­

nals or should the buffer space be just provided for the 

whole system. 

Since a dedicated processor performs a dedicated func­

tion (that of either storing input programs, or translation, 

or execution, or system supervision, etc.), the assignment of 

buffer space to different processors in a dedicated proces­

sors environment indirectly segregates buffer space 

functionally and buffer space is automatically partitioned 

into a number of different homogeneous units. 
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However, if buffer space is allotted physically to 

either different terminals or for the whole system, it takes 

a different perspective. Now the buffer space is not 

segregated into different homogeneous units automatically, 

and if further partitioning of buffer space is to be done it 

could be done on a functional basis. 

The idea of partitioning buffer space functionally is to 

treat the whole buffer space either as a homogeneous unit or 

a heterogeneous unit. The analogous approach of partitioning 

buffer space functionally in a conventional computer system 

might be that of segregating buffer space into "instruction 

buffer space" and "data buffer space". However, for SYMBOl-

IIB like computing structures, the approach might be that of 

of partitioning buffer space into three parts—one part for 

source string (source buffer space), one for object string 

(object buffer space), and one for name-table and data (name-

table buffer space). The reasoning behind this kind of 

partitioning is based on the fact that almost all the virtual 

pages of STflfiOL-IlB like computer structures are used for one 

of those three purposes. 

Another approach of partitioning buffer space 

functionally is to have one to one correspondence between the 

buffer space and the main memory. Hence the whole buffer 

space might be thought of as partitioned into three parts— 

system and terminal header buffer, data group linking buffer 
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and data buffer respectively. 

The idea of providing buffer is to simply provide fre­

quently accessed data at a faster rate to the processors. 

Hence, data which are accessed infrequently (and data which 

could be accessed at a faster rate) need no buffering. Group 

link words are generally accessed only once for the whole 

group. Hence the access frequency of group link words is 

1/w, where w is the number of words in the group. Hence as w 

decreases, the frequency of group link word accesses in­

creases, and as w increases, the frequency of accessing group 

link word decreases. The justification for providing a buf­

fer for data or group linking words is valid only after 

taking extensive traces for frequency of accesses to group 

link words. If the provision of a data link buffer does not 

improve the performance significantly (as far as the hit-

ratio is concerned) and if it is relatively expensive then 

apparently there is not much justification in providing a 

buffer data link. Hore about this is discussed in chapter 

IV. Taking this approach the whole buffered virtual memory 

system of SYHBOL-IIR like computing structures would look as 

in (Fig. 9). 

Fixed or variable partitioning 

Another factor which is very important for efficient 

buffer management strategy is to decide how the buffer space 

should be partitioned among processors or the terminals or 
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for the whole system. 

The overall hit-ratio obtained in a buffered virtual 

memory system partitioned among different classes is the com­

bination of hit-ratios for each class. Hence, the principle 

behind partitioning of buffer space among various classes is 

to obtain maximum hit-ratio for the most frequently 

referenced class. The problem of deciding whether to parti­

tion buffer space equally among all the classes or not 

depends upon the frequency of reference of each class. As 

long as all the terminals of the system are given equal pri­

ority for system usage, nothing can be said about the load on 

the system by different terminals, and hence one easy ap­

proach of partitioning buffer space for terminals would be to 

partition the buffer space equally among all the terminals. 

Though the same approach of fixed partitioning of buffer 

space might be used for the dedicated processors, the follow­

ing factor should be kept in mind. 

The idea of achieving multiprocessing by the use of 

multidedicated processors in a time-sharing environment is 

the efficient utilization of hardware resources and faster 

response time (36,37,38). One of the major presumptions 

behind this concept is that, in a full operational time­

sharing environment, all of the processors would be fairly 

busy. However, as far as the processing of a job by differ­

ent dedicated processors is concerned the duration of use or 
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the service time of each dedicated processor is not the same, 

that is all the processors are not needed for the same amount 

of time. The amount of service required of a dedicated proc­

essor is highly program dependent. Also, the type of ad­

dresses referenced by these dedicated processors vary. Some 

of these processors generate a sequential address reference, 

and some scatter their address referencees non-sequentially. 

Hence, the amount of processor service time along with its 

type of address reference should be another major factor in 

deciding whether the buffer space should be partitioned 

equally among all the dedicated processors or not. If the 

frequency of reference of different dedicated processors is 

about the same then equal partitioning of buffer space would 

seem to be the right approach. Otherwise, for obtaining 

better hit-ratio, the processor with the maximum (minimum) 

frequency of reference should have the largest (smallest) 

portion of the buffer space. Hence, the addressing pattern 

of different dedicated processors, their frequency of usage, 

and the amount of their service time should be some of the 

major factors in the decision of equal or unequal and fixed 

or variable partitioning of buffer space amongst different 

processors. 

Buffer address translation strategies 

Another factor which is also of some importance in the 

design of a buffered virtual memory system is the efficient 
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design of "address translation strategies". 

The most important goals of an efficient address trans­

lation scheme are that it 

1. Should try to reduce the delay associated with ad­

dress transformation with minimum cost and 

2. Should be as simple as possible. 

A virtual memory system tends to give the illusion of an 

infinite physical storage space to the users even though the 

physical storage space is limited. Hence, there has to be an 

address translation strategy for mapping the virtual space 

into physical space. In a simple paged virtual memory system 

this is accomplished by the provision of an associative mems-

ry, which serves as a dynamic map table and keeps track of 

the association of a physical page to a virtual page. Every 

reference to memory is now accompanied by an address trans­

formation, to locate its physical location. 

In a buffered virtual memory system, buffering adds an­

other level to the levels of memories. Thus there has to be 

another map for mapping buffer locations into physical loca­

tions. Hence intuitively it seems that, in a buffered 

virtual memory system, every memory reference would involve 

two address transformations--one from the virtual space to 

main memory space and the other one from main memory space to 

the buffer space. However the control can be so designed 

that two address transformations are needed only when an 
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auxiliary to main or main to cache transfer is performed and 

not when the data is already in the cache. The extra price 

one has to pay for saving one extra transformation is in the 

increase in size of the buffer directory. The buffer 

directory no* has to have information regarding the associa­

tion of buffer location with the main memory as well as the 

auxiliary memory. 

For SYMBOL-IIB like computing structures without the 

buffered memory, the address translation could be done as 

shown in Fig. 10. 

However with buffering, the address translation is not 

so simple. 

In STHBOL-IXS like computing structures, with any memory 

request, we have the following information: 

1. The virtual address which involves 

a). The virtual page address 

b) • The group address and 

c). The word address. 

2. The processor which is requesting 

3. The terminal number for which the processor is 

working and 

4. The page list number (the purpose for which the 

request is being made). 

Based on this information, mapping techniques for 

buffered virtual memory system of SYHBOL-IIR like computing 
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structures could be divided into three cases depending on how 

the buffer space is going to be partitioned, that is whether 

it is going to be divided into various classes on terminal 

number basis, or processors basis or on the whole system 

basis. Each of these three cases could be further divided 

into two schemes based on whether each reference to memory 

has to involve one or two address transformations. 

These three cases are illustrated in Fig. 11 to Pig. 14. 

When the whole buffer space is allotted to the system 

and if it is to be partitioned into several classes, logical­

ly adjacent pages are thought to reside in contiguous 

classes. Hence for this case, the lower order bits of a 

virtual page represent a class Dumber. But when the buffer 

space is to be partitioned among various terminals it takes a 

different perspective. 

In SYMBOL-IIR like computing structures, any terminal 

could be owner of several logically or physically contiguous 

pages, hence representing the class number by the lower order 

bits of the virtual page address might result in the pages of 

one terminal belonging to two different classes. In this 

case the terminal number itself (rather than the lower order 

bits of virtual page address) represent the class number, and 

it is used as the key for searching the buffer directory. 

The same approach could be used also for the processors. 

However partitioning of buffer space into classes based on 
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processors does not truly partition buffer space among vari­

ous classes, because they share each others information. But 

as far as the searching of the buffer directory is concerned 

the processor number along vith the virtual address could be 

used as a key to search the whole directory. 

When the whole buffer space is allotted to the system, 

and if the partitioning of the buffer into various classes is 

desired, one easy approach might be of allotting equal buffer 

space for each class. 

In the schemes where one address transformation is 

saved, the buffer directory (instead of the main associative 

memory ) is searched first. And if the required block is not 

found in the buffer, the virtual page address is used as a 

key to search main memory to see if the required page is in 

the main memory or not. Hence now the buffer directory has 

to have the association of buffer location with both the main 

memory and the auxiliary memory. This results in the bigger 

size of the buffer directory. Hence, there has to be an ad­

dress translation strategy for mapping the virtual space into 

physical space. 

Buffer space replacement considerations 

One of the very important parameters which affects the 

overall effective design of the buffered memory for SYMBOL­

IZE like computing structures is the design of the buffer 

space replacement strategies. Even though the problem of 



www.manaraa.com

55 

"thrashing" is not so severe in buffered memory (because of 

speed difference of about 10 and not 100 or more between main 

memory and buffer (12,13), the whole idea of improving the 

performance by the use of a buffer memory would lose its im­

portance if, because of a bad space replacement strategy, a 

very poor hit-ratio were obtained. Hence, while designing in 

efficient buffer space replacement strategy the following tvo 

factors should be kept in mind: 

1. The algorithm should try to maximize the "block 

residency time" in the buffer, that is the number of distinct 

blocks encountered between two successive block swaps should 

not be more than the buffer capacity. This principle also 

would tend to increase the "activity" of the buffer (42,43) 

and 

2. The algorithm should tend to replace a block from 

the buffer whose probability of reference in near future is 

minimum. This also will measure indirectly the "buffer 

inactivity time" (42,43). 

Even though the buffer replacement strategy has not been 

found to be of much importance in conventional machines, it 

seems to be important for a computing structure like S79B0L-

IIR. 

It is as important as the buffer space allocation strat­

egy, for the same reason: the buffer has to be as small as 

possible for cost considerations and at the same time it 
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should tend to achieve very high hit-ratio. 

The design of the buffer space replacement strategy con­

sists of designing of following two factors: 

1. Designing of "replacement policies", and 

2. Designing of "replacement mechanisms". 

Replacement policies are the policies for deciding how 

the replacement is to be handled, that is whether a "local 

policy" or a "global policy" should be used, and mechanisms 

are the means of implementing a particular rule or scheme. 

The rules might be one of the followings: 

1. FIFO (first in first out) 

2. LIFO (last in first out) 

3. FINOFO (first in not used first out) 

4. LINUFO (last in not used first out) 

5. LEO (least recently used) 

6. MRO (most recently used) 

7. LFO (least frequently used) 

8. MFO (most freguently used) 

9. Biased Replacement Rules etc. (6,7). 

The local replacement policy is the policy in which a 

processor/terminal replaces data from its own subset of buf­

fer memory space to make room for newly demanded data. 

Whereas, a global policy is the one in which a terminal or 

processor can replace any other's data. One important aspect 

which has to be kept in mind though is that, for STHfiOL-IIR 
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like computing structures there is "no-sharing" of informa­

tion between different terminals. However, different 

dedicated processors share each other's information. 

Allotting fixed and unequal amount of buffer space for either 

terminals or processors tends to divide buffer space into a 

fixed number of classes. As far as partitioning of buffer 

space into various classes for terminals is concerned it is 

all right, because they do not share each other's informa­

tion. However as far as the partitioning of buffer space for 

various processors is concerned, it creates a problem. Be­

cause processors have to share each other's information, 

there has to be a provision for allowing the processors to 

share each other's buffer. Hence, the technique for allocat­

ing and replacing buffer space for processors is as follows: 

1. When certain demanded information by some proces­

sor is not in its own buffer, then all the buffer directory 

should be searched in order to find the possibility that it 

might belong to some other processor's buffer space. If it 

is found in any other processor's buffer directory, then the 

required data should be fetched from that processor's buffer 

space. 

2. However, if the required information is not found 

in the whole buffer, then a certain block has to be replaced 

from the buffer. At this point, a "local" or "global" policy 

could be used. As far as the processors are concerned, a 
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local policy seems to be better than the global, because, in 

using a global policy a processor might replace a block (be­

longing to some other processor's buffer) which could seem to 

be of least importance to it at that point, whereas it could 

be quite important to the processor from whose buffer space 

the block is being replaced. 

Hence, as far as processors are concerned, the principle 

of "global searching with local replacing" seems to yield 

better results intuitively. 

However, as far as terminals are concerned, the picture 

looks quite different. 

1. Hhen information is needed by a certain terminal, 

then the directory of that terminal only is searched. If it 

is not found in that class, then a particular block has to be 

replaced. 

2. How the principle of either "local" or "global" 

replacement strategy could be used. Since the terminals do 

not share each other's information the "local" policy seems 

to yield better results than the "global" one. Hence, as fir 

as terminals are concerned the principle of "local searching 

with local replacing" should be used. 

As far as partitioning of buffer space into different 

terminals or processors is concerned the buffer space 

replacement strategy could be investigated a little further. 
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The buffer space for a terminal could be pictured as a 

collection of three hoiogeneous sub-units. These three sub-

units are the buffer for source, object and name-table and 

data. Hence, the "local" replacement policy, for a terminal, 

could be further divided into tvo sub-policies as follows: 

1. Sub-local policy or 

2. Sub-global policy. 

Sub-local policy is the policy of replacing a particular 

block, belonging to the same sub-class as the demanded block 

i.e., source, object or name-table and data list, from its 

own assigned buffer space only. Sub-global policy is the 

policy of replacing any block belonging to its own assigned 

buffer space for a new demanded block. So, for the sub-local 

policy, a demand for a block belonging to the source list 

could only replace a block belonging to the source list only 

from the buffer, whereas in the sub-global policy, a demand 

for a block belonging to say source list could replace a 

block belonging to other lists. 

is far as the partitioning of buffer space for the proc­

essors is concerned it might appear to be a collection of 

different homogeneous units. However, because the processors 

share each others information, the buffer of certain proces­

sors might result in as heterogeneous units. So the similar 

principle of sub-local and sub-global replacement policy can 

be applied to the processors also. 
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On the whole, the partitioning of buffer space in 

SYNBOl-IIB like computing structures can be pictured as in 

Pig. 15. 

Comments on Buffered System Organization 

Before carrying out any simulation analysis of a system, 

it has to be modelled. And to model a system various impor­

tant parameters have to be decided. This chapter serves as a 

basis for models of buffered memory systems of SIHBOL-IIB 

like computing structures and analyses various important pa­

rameters which can influence tremendously the simulation. 

This provides an insight into the design of buffered memory 

systems of SYMBOL-IIR like computing structures, and based on 

these factors the simulation experiment is carried out and is 

discussed in the next chapter. Also one of the main purposes 

of this chapter was to study the effect of architectural or­

ganization and its philosophies on the design and management 

of its buffered memory systems. 
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CHAPTER 17. EXPESIHMTAL ANALYSIS AND RESULTS 

Introduction 

The planning of the experiment for determining the per­

formance of buffered memory systems for SYHBOL-IIR like com­

puting structures essentially consists of three things: 

1. The selection of the "controlling" or "experimen­

tal" factors. 

2. The design of the experiment itself and 

3. The determination of the factors to be analyzed and 

their figures of merit (42,43). 

Controlling Factors 

Controlling factors are the factors which can be con­

trolled by the experimenter for controlling the process under 

investigation. These are essentially the factors which con­

trol the results of the performance analysis and based on 

which a feeling of the performance of the system is obtained. 

For a particular experiment the number of these controlling 

factors could be quite large. However as the investigation 

of a process is very much limited by time and economic con­

siderations one must try to select only the factors which 

seem to be potentially most important for the particular ex­

periment. For analyzing the performance of buffered memory 

systems for SYHBOL-IIR like computing structures the control­

ling factors which are chosen for investigation are: 
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1. The users environments 

2. The buffer partitioning algorithms 

2. The replacement algorithms and 

4. The buffer and block sizes. 

As ve can see each of these controlling factors can be 

varied. For these various controlling factors the various 

alternatives that are considered are as follows: 

Osers environments 

One of the important parameters which determines the 

comparative suitability of one hierarchical system over an­

other is the nature of users environments. One of the impor­

tant questions that has to be answered for determining the 

applicability of a buffered memory system is how does the ef­

fectiveness of the cache vary from one program to another, 

that is from one users environment to another. Hence to 

evaluate the performance of buffered memory systems, one 

phase of the task is to test performance in several types of 

users environments, and the second phase of the task which is 

perhaps more difficult is to identify the worse conditions 

where cache design may be a poor choice. 

This factor can be divided into three categories: 

1. Scientific environments 

2. Commercial environments or 

3. General purpose environments. 

To reduce the amount of computation time and because it was a 
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feasibility investigation of buffering SYMBOL-IIR like com­

puting structures, the investigation vas restricted to only 

small scientific users environments. 

This factor is divided into three further subdivisions 

for the purpose of the investigation: 

1. Buffer partitioned for processors 

2. Buffer partitioned for terminals and 

3. Buffer partitioned for system. 

Replacement algorithms 

1. Least recently used (LBO) 

2. Most recently used (MBU) 

3. First In first out (FIFO) 

4. Last In first out (LIFO) 

5. Least frequently used (LFO) 

6. Host frequently used (MFD) 

Each of these replacement algorithms were further divided 

into two subfactors—private (local) or public (global), de­

pending on where they were applicable. 

Buffer and block sizes 

This factor can be varied over a vide range of values, 

however for our experimental purposes the block size vas 

fixed to be 8 vords and the buffer size vas varied from 16 to 

512 vords. 
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Design of the Experiment 

One of the factors strongly affecting the performance of 

a buffered memory system for S7flB0L-IIB like computing struc­

tures is the nature of the trace of memory addresses of both 

the instructions and the data or operands, referenced by var­

ious processors for the various terminals. One of the most 

common «ays for evaluating the performance is by a simulation 

technique. The main idea behind simulation is to generate 

sequences of memory requests resembling the real environment 

and to analyze them for the real environment. There are two 

approaches for carrying out this simulation: 

1. Instrumentation technique and 

2. Synthetic technique. 

Instrumentation techniques are the techniques for gener­

ating sequences of memory requests with the help of instru­

ments when various test programs are really running in the 

system. The dynamic traces of the addresses are recorded by 

various instruments. Instrumentation techniques have been 

very popular because it is possible to record a dynamic ad­

dress sequence of various processors with sufficient accura­

cy, that is memory addresses as they are generated are re­

corded. The major disadvantage of this technique however is 

that this is very inflexible, and is not machine independent. 

The need to evaluate a different buffered memory system with 

a different kind of environment might need a minor or major 
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modification of the previous instrumentation technique. 

Synthetic techniques are the techniques for evaluating a 

completely different environment from the existing one by a 

study of statistical characteristics of the traces for the 

present environment (1). 

However, most of the studies that have been taken so far 

to evaluate the performance of various conventional buffered 

memory systems have used various instrumentation techniques. 

The usual approach followed in these studies has been to 

record memory address traces of some representative test pro­

grams and then feed them into a simulator which monitors the 

loading and unloading, into and out of, cache memory in 

accordance with the policies and mechanisms of the real envi­

ronment and computes the probability of either success or 

failure. Hence the instrumentation technique was adapted for 

collecting the data dynamically. 

One of the main goals of the experiment design should be 

to collect data dynamically without affecting the dynamics of 

the system. 

As far as the simulation analysis of the buffered system 

is concerned, the following information was thought to be 

enough: 

1. The processor number 

2. The terminal number 

3. The page list number ( the purpose for which a page 
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was being used ) 

4. Virtual page address and 

5. Group address 

An interface unit vas built to record this information 

dynamically. The interface unit consisted of a Fabri-Tek 

core and a Kennedy tape unit. These addresses were collected 

directly from the "local bus" of the Memory controller and 

were stored in a Fabri-Tek Core Memory. There was also the 

provision for storing the data in the tape unit. To analyze 

this voluminous data there were two alternatives: 

1. Collect all the data on a tape and then analyze it 

with programs in the IBM System, because the SYMBOL-Iia does 

not have a tape interface capability or 

2. Provide some means to transfer collected data from 

the Fabri-Tek core to the STHBOL-IIB disc and then analyze 

it. 

The SYMBOL-ZIB being available for the research purpose, 

the second alternative was chosen. Besides baing able to 

analyze the data at times of convenience, this also turned 

out to be very economical. The programs which were chosen 

for analysis usually generated about 15K to 24K addresses. 

But, the Febri-Tek core used for collecting the addresses had 

the capability of storing only 8K of addresses at a time. 

Hence, there had to be the provision for transferring the 

collected data ( 8K at a time ) and resuming the program from 
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the point where it «as interrupted last, conveniently without 

losing any information. After all the addresses for a par­

ticular program were transferred then the simulation analysis 

program was run. 

Factors to be Analyzed and their Figures of Merit 

For the design and management of buffered memory systems 

for SYMBOl-IIE like computing structures, the following 

factors are considered to be very important: 

1. Hit-ratio 

2. Processor utilization and its address reference 

pattern 

3. Processor traffic rate and 

4. Block and buffer utilization. 

Hitzratio 

One of the most important factors for the design of 

buffered memory systems is the hit-ratio. Hit-ratio is the 

ratio of number of successes of memory requests to the buffer 

divided by the total number of memory requests. Miss ratio 

can be defined as the total number of misses divided by the 

total number of memory requests. So miss ratio is equal to 

(1 - hit-ratio). 

Hence the figure of merit for hit-ratio is that it 

should be as close to unity as possible and the miss ratio 

should be as small as possible. 
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Erocessor_utn,ization_and_its_addr&ss_referençe_ 

One of the other important factors to be considered foe 

buffering a multidedicated processors time-sharing computing 

system is the percentage utilization of each dedicated proc­

essor. The basic idea behind the purpose of achieving 

multiprocessing with the help of mult idedicated processors is 

the belief that under full load conditions, all the proces­

sors would be quite busy. However, since these processors 

are dedicated, the amount of service needed for a particular 

dedicated processor is highly program dependent. The amount 

of buffer to be allotted to a particular processor is 

affected by the amount of that particular processor's activi­

ty or utilization. 

Besides the amount of processor utilization, the other 

factor which affects significantly the amount of buffer for a 

particular processor is the address reference pattern of that 

particular processor. The dedicated processors of STNBOL-IIB 

are designed to do dedicated tasks—and since these dedicated 

tasks are quite different, the addressing pattern of these 

processors are quite different too. Some of these processors 

have highly sequential address reference patterns and some 

have highly random address patterns. 

Processor traffic rate 

Another important factor to be considered is the traffic 

rate for different dedicated processors. The traffic rate 
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for each dedicated processor is defined as the ratio of the 

traffic between the main memory and the dedicated buffer to 

the traffic between the dedicated buffer and the dedicated 

processor. It is simply the number of words transferred to 

that dedicated buffer from the main memory divided by the 

total number of accesses of memory requests by that particu­

lar processor. One of the main goals of buffering such a 

multidedicated processor system is to minimize the traffic 

between the main memory and the buffer and maximize the traf­

fic between the particular processor and its dedicated buf­

fer. A higher traffic rate would indicate that most of the 

blocks which are being brought to that particular buffer are 

not being used. Hence the figure of merit for traffic rate 

is to be as low as possible. 

Block and buffer utilization 

The last but not the least important factors are the 

block and buffer utilization. Block utilization is the aver­

age number of words of the particular block active between 

two successive block swaps, where as the buffer utilization 

is the average number of blocks of a particular buffer active 

between two successive block swaps. So, the block utiliza­

tion is the number of words of a particular block referenced 

at least once between two successive block swaps and the buf­

fer utilization is the number of distinct blocks of the buf­

fer referenced at least once between two successive block 
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swaps. 

Block utilization illustrates the usefulness of extra 

words ia a block and buffer utilization illustrates the use­

fulness of extra blocks in the buffer. 

Experimental Results 

Variation of hit-ratio.with replacement algorithms 

An analysis was carried out on one set of data to see 

the variation of hit-ratio with different replacement algo­

rithms. Various replacement algorithms that were considered 

are LEO, MRU, IPD, HJ?0, FIFO and LIFO. It is observed from 

the Pig. 16 that, like conventional computer systems, hit-

ratio does not vary drastically with different buffer 

replacement algorithms and LRU tends to give the best hit-

ratio. Because of this it was decided to run all subsequent 

simulation analysis for LRU algorithms only. 

Buffer allotted to the processors 

Percentage of activity of different processors As 

mentioned above, the percentage of activity of a particular 

processor for the solution of a program is highly program de­

pendent. However, for small scientific programs, the activi­

ty of these different processors are almost constant. 

Fig. 17 illustrates the percentage of total memory ad­

dress request of different processors, fe see that the Memo­

ry Reclamation Processor (HE), the processor which works in 

the background mode and has the lowest memory priority, has 
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the maximum percentage of memory accesses. This is because 

of certain design features of the system. For memory group 

reclamation, the HE polls all the terminals 4 times—twice 

for the page list 2 and once for page list 1 and 3 to check 

to see if it has any work to do for that particular terminal. 

This constitutes a substantial percentage of the total memo­

ry requests. Also ve see that this processor is active 

almost from the beginning of the program to the end of execu­

tion. 

The processor having the next highest memory access, at 

the end of execution, is the Central Processor (CP). At the 

beginning of execution the Central Processor has a very 

insignificant portion of total memory requests. However, at 

the end of program execution, the CP access percentage is 

quite significant. 

The System Supervisor (SS) constitutes about 12% of the 

total memory accesses. Also, the SS is active from the be­

ginning of the program to the end of the execution. 

The Translator (TB) translates the program in a fixed 

amount of time and after that there is no need for the Trans­

lator for that program until the end of execution of that 

program. Hence after the translation of the program is over, 

the number of accesses of TB remains equal to what it was 

when it just finished translating. Hence plotting the per­

centage of access of memory requests by TB in an accumulative 
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basis results in a consistent declining curve for the TB. 

The activity of the TB starts only when the program has been 

loaded and a run command has been encountered. 

The Input/Output Processor (IP) activity is highest 

during the loading of the program. The activity also in­

creases if there are quite a few input/output statements in 

the program. Looking at the activity of the IP we see that 

its activity starts almost from the very beginning and then 

it starts declining. 

The amount of buffer allotted to a particular processor 

for a reasonable hit-ratio is a function of the amount of the 

activity of the particular processor. However, besides the 

amount of the activity of the particular processor, another 

factor which affects the hit-ratio is the address reference 

pattern of the particular processor. 

To investigate this, hit-ratio was computed for a large 

variation of buffer sizes for all different processors. 

Since the principle of global searching with local replacing 

is used for the processor, the amount of buffer allotted to a 

particular processor affects the hit-ratio for the other 

processors. 

Each processor contributes to the over all hit-ratio of 

the system and the degradation in performance of hit-ratio 

for any particular processor can result in over all poor per­

formance. Hence one of the basic design goals for achieving 
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a high hit-ratio for nultidedicated buffering for a 

aaltidedicated processor system is that the individual buffer 

for each processor is adequate. 

Memory Bed aimer fMR) Pig. 18 illustrates the varia­

tion of miss ratio of HR vit h the number of blocks over the 

total execution of the program. 8e see that the miss ratio 

for ME is guite high until the blocks allotted to its buffer 

are more than 16 and then for 16 blocks the miss ratio 

dramatically decreases to about 6.3%—yielding a hit-ratio of 

93.7%. The reason for needing about 16 blocks for the HR be­

fore any increase in performance is observed is its constant 

polling of 15 other terminals—vhich may or may not be active 

at the time of collection of the data. Hence to investigate 

the number of blocks needed for the MR for the service of the 

active terminal, the addresses corresponding to other termi­

nals were ignored, ignoring these address requests ve see 

that just 4 blocks for HE reduces its miss ratio to about 

11%—a 3 times improvement in miss ratio (Fig. 20). 

Also without stripping the addresses corresponding to 

other terminals, HE had about 43% of total memory activity 

(Fig. 17). But after stripping these requests the % of HE 

memory access decreases to about 15% (Fig. 19), Also after 

stripping these requests, an allocation of 2 blocks to the HE 

buffer results in better hit-ratio than that of 12 blocks for 

MR for the unstripped case (Fig. 20). 



www.manaraa.com

50 

2 Blocks 

4 Blocks 

Blocks 
40 

12 Blocks 

30 

•H 

16 Blocks 

24 Blocks 

* + + + + 

Virtual ( Addresses or Time ) in units of 1000 

fig. 18. Variation of miss ratio tor MR 



www.manaraa.com

Buffer allotted to the Processors 

40 

( Addresses of MR for other terminals except the active one are ignored) 

Equal No. of Blocks to the Processors 

o *r4 4J 
2 
« 
CO 

t 
IM 
o 
5^ 

30 "r 

20 ir 

10 

2 Blocks 

0 

12 Blocks 

-O" tr 

4 Blocks 

0 0 Ô- -Ô—Ô—o—&— e — o  

8 Blocks 

20 Blocks 
32 Blocks 

-4- —e 

^ 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7 

Virtual ( Addresses or Time ) in units of 1000 

Fig. 19. Variation of miss ratio for MR 



www.manaraa.com

Buffer allotted to the Processors 

( Addresses of MR for other terminals except the active one are ignored) 

30 

o 

S 20 
0] 
CO 

17.72% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7 0 

Virtual ( Addresses or Time ) in units of 1000 

Fig. 20. Variation of miss ratio for different Processors 



www.manaraa.com

80 

System Supervisor (SS) Without ignoring the requests 

by MR for other terminals services, SS had about 12% of total 

activity (Pig. 17). How ignoring these requests the total 

activity of SS increases to 17.72% (Pig. 20). 

Por SS ve see that there is no drastic improvement in 

performance until the total number of blocks alloted to SS is 

about 32 blocks (Pig. 21). There is a dramatic improvement 

in the miss ratio for SS from 24 to 32 blocks. This is be­

cause of certain design philosophies of the system. The SS 

has to go through a 'push* routine for marking the pages be­

longing to the particular terminal as inactive, when the job 

is completed. This involves the scanning of an In-core-list 

(ICL)—a list of pages which are in core at that time. This 

essentially results in scanning of 28 different page headers. 

This could result in 28 different blocks. Besides these, SS 

has to have one block of data corresponding to the terminal 

header and one block of data for System Queuing. 

Even though the % of activity of SS is low compared to 

that of MB , because of its address reference pattern, a sig­

nificant decrease in miss ratio for SS does not occur until 

its buffer has 32 blocks. 

Central Processor (CP) Without ignoring the address 

requests of ME for other terminals, the CP constitutes 39.6% 

of total memory accesses (Pig. 17). However, ignoring these 

requests, the CP memory access percentage increases to 58.63% 
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(Fig. 20). 

As far as the variation of miss ratio with different 

number of blocks for the CP is concerned, we ses three big 

jumps (Fig. 22). 

For less than 3 blocks for the CP buffer the miss ratio 

is quite high. Increasing the number of blocks to 3 results 

in a significant increase in the hit-ratio. This is because 

CP has now roughly one block for object string, one for name 

table and one for stack or data, increasing the buffer size 

to 4 blocks does not result in a very big increase in per­

formance. However increasing the buffer to 8 blocks results 

in a sudden increase in performance. Afterwards not much in­

crease in performance is obtained until the buffer size 

becomes 32 blocks—when it results in a hit-ratio of almost 

unity (Fig. 22). This is because now the CP has almost all 

the object string, name table and data in its buffer. 

The amount of buffer allotted to the Central Processor 

is a function of the size of the program (because the size of 

object string and the size of the name table is a function of 

the size of the program)—and its pattern of reference. The 

scanning of the object string is almost sequential in 

nature—where as the scanning of name table and stack are 

not necessarily sequential. 

Eight blocks for the CP buffer seem to yield quite good 

hit-ratio. 
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Translator (TR) The TB scans the source string se­

quentially and generates object code almost sequentially. It 

also needs to scan the the reserved word table and the name 

table if necessary. The addressing pattern o£ TB hence jumps 

between the source string to reserved word table to the name 

table and the generation of object code. Hence for the TB 

hit-ratio seems to improve with the increase with the sizes 

of buffer allotted to it. 

The amount of activity of the TE is quite small 

(Fig. 17). However the buffer allotted to the TB is a func­

tion of the size of the program. From Fig. 23 we see that TB 

yields a reasonable hit-ratio when the number of blocks 

allotted to its buffer is around 16. 

Input/Output Processor (IP) The IP scans the program 

almost sequentially. It needs one block to keep the source 

address and one block for the data. 

He see that for 2 blocks the miss ratio is quite high 

and as the number of blocks is increased to 4 the miss rati) 

decreases quite sharply. Increasing the buffer to 8 blocks 

results in slight increase in hit-ratio (Fig. 24). Hence 

about 4 blocks are enough for the IP. 

Hence we see that as far as the partitioning of the buf­

fer for the processors is concerned the following numbers 

seem to yield a very good hit-ratio; 
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16 blocks for HE 

16 blocks for TB 

8 blocks for CP and 

32 blocks for SS 

or a total of about 76 blocks results in a dramatic improve­

ment in performance. 

Over all miss ratio 

Fig. 25 illustrates the variation of over all miss ratio 

with the virtual time, for different buffer sizes. As ve see 

in the figure, equal buffer size is allotted to each proces­

sor except the two cases where the buffer size for MR is made 

equal to the total buffer sizes for all other processors. 

This figure illustrates the case where the addresses of MR 

corresponding to other terminals are not ignored. 

From the figure we observe that a total buffer size of 

only 32 blocks—4 blocks each for SS, IP, CP and TR and 16 

blocks for MR yields the best hit-catio. This seems to be 

little surprising because considering the optimum buffer size 

for each processor individually the total optimum buffer size 

was found to be 76 blocks. Hence considering the over all 

hit-ratio not much is gained by increasing the buffer size to 

more than 32 blocks and 32 blocks are adequate. 

Fig. 26 illustrates the variation of over all miss ratio 

with the virtual time for different buffer sizes—when the 

addresses of MR corresponding to other terminals except the 
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active one are ignored. This plot also illustrates the case 

when Sub-global LSO replacement policy is used. 

Comparing Fig. 25 and Pig. 26 ve observe that for small­

er buffer sizes, the case with ignoring the addresses of MR 

for other terminals results in better hit-ratio--however as 

the buffer size is increased the unstripped case tends to 

give better results. 

Fig. 27 illustrates the over all miss ratio percentage 

variation for various buffer sizes for processors using Sub-

local LRU replacement policy. All the processors are 

allotted equal buffer space. The addresses of HE for other 

terminals except the active one are now ignored. Comparing 

Fig. 27 and Fig. 25 we observe that for smaller buffer sizes 

sub-local policy yields a dramatic improvement in performance 

over the Sub-global policy. However, as the buffer size is 

increased, there is not much difference between the two and 

both tend to give about the same results. This proves the 

superiority of Sub-local policy over the Sub-global policy 

for smaller buffer sizes when the buffer is allotted to the 

processors. 

Buffer allotted for the whole system 

One other possibility of buffering STHBOL-IIR like com­

puting structures is to provide a buffer for the whole 

system. 
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Nov like a conventional system, the whole buffer can be 

partitioned into certain number of classes. One technique of 

partitioning is on the basis of lower order bits of virtual 

page address. How each class has its own directory and pri­

ority update list—and there is no sharing of information be­

tween these classes. 

Based on this principle, simulation analysis was carried 

out for three different cases as follows: 

1. 4 classes 

2. 8 classes and 

3. 16 classes. 

The total buffer size was fixed to 64 blocks and each 

class was allotted the same amount of buffer space. From 

this analysis it is seen from Fig. 28 that 4 classes with 16 

blocks per class yielded the best hit-ratio and 16 classes 

with 4 blocks per class yielded the worst hit-ratio. From 

this figure we see that for a fixed buffer size, a small num­

ber of classes with a large number of blocks/class yields 

better hit-ratio than a large number of classes with a small 

number of blocks/class. However even with 4 classes and 16 

blocks per class the miss ratio is quite high—17.5%. 

Partioning of buffer space functionally Par titio nia g 

of buffer space into various classes ( like the conventional 

machines ) for the whole system essentially partitions the 

whole buffer space into a collection of different 
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heterogeneous units. Another approach might be that of 

partitioning the whole buffer space functionally—where now 

the buffer might be looked upon as a collection of different 

homogeneous units—one for page list 0, one for page list 

1—for the source string, one for page list 2—for name table 

and data and one for page list 3—for the object string. 

Actually there is no such page list as 0 but, some of the 

processors use page list 0 when they do not need any space. 

The maximum percentage of this page list 0 addresses is used 

by the System Supervisor (SS). Addresses corresponding to 

page list 0 are allotted a s^arate buffer space. Based on 

this a simulation analysis was carried out for different buf­

fer sizes. Fig. 29 illustrates the variation of over all 

miss ratio percentage with different buffer sizes. From this 

we see that a buffer of about 64 blocks yields reasonable 

hit-ratio. However, even with 64 blocks the miss ratio is 

quite high compared to that of 32 blocks for the buffer 

allotted to the processors. 

Buffer_allg#ed_tg_the_terminal 

Another way of buffering STMBOL-IIB like computing 

structures is to allocate certain buffer space on a strictly 

job or terminal basis. 

We see that on a terminal basis, the hit-ratio increases 

as the buffer for the terminal increases. With 8 blocks the 

miss ratio is quite high—about 33% and increasing the buffer 



www.manaraa.com

t 
«4-1 
O 

40- • 

30 - -

0 
3 20 
S 
ta 
01 

10--

Buffer allotted to the System 

Buffer Partitioned Functionally into 4 Homogeneous Units 
Equal Buffer Space allotted to each Unit 

4 Blocks per Unit 

16 Blocks per Unit 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7 

Virtual (Addresses or Time) in units of 1000 

Fig. 29, Variation of Over All miss ratio 



www.manaraa.com

Buffer allotted to the terminal 

40 

8 Blocks 

30 ( No buffer for the GLW and Header Words) 

16 Blocks 

«4-1 

4 Blocks 

Ha­

lo 
8 Blocks 

16 Blocks 

( Buffer for the GLW and Header Words) 

0 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7 

Virtual ( Addresses or Time ) in units of 1000 

\D 
a\ 

Fig. 3 0. Variation of Over All miss ratio 



www.manaraa.com

« 

97 

to 16 blocks results in a miss ratio of 26%. 

However providing separate buffer space for the group 

link word and the system and terminal header words results in 

a dramatic improvement in performance with fewer blocks. 

Allotting separate buffer space for the group link word and 

system and terminal header words, we see that for 16 blocks 

for buffer, the miss ratio is about 7.5% (Fig. 30) . 

Percentage of group link words and header_words 

In order to justify a separate buffer for group link 

words and system and terminal header words it is necessary to 

know the frequency of references for these. If the frequency 

of reference is quite small, then there is no need for pro­

viding separate buffer spaces for these. 

From Fig. 31 we see that group link words are accessed 

roughly 1/8 of the total memory accesses. Surprisingly, the 

system and terminal header words accesses constitute roughly 

50% of the total memory accesses. So both of these combined 

constitute roughly 2/3 of total memory accesses--which makes 

one think about providing a buffer for them. 

As mentioned before, there is no need to keep the system 

and terminal header information in the same core. Hence the 

whole header information can be put in a separate memory and 

a fast buffer for the group link words (GLV) and the system 

and terminal header words can be provided. 
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The buffer size for the group link word for each class 

will be w words if the total number of blocks for that buffer 

is w. The size of the buffer for the GLW would be quite 

small. However, the size of the buffer for the system and 

terminal header words would vary depending upon the 

partitioning scheme that is whether the buffer is allotted to 

the whole system or to the terminal or to the processors. 

The size of the buffer for the processors case would be quite 

small—about one extra block for each processor. Allotting 

one more block for TB and SS would further improve the per­

formance. 

Based on this the hit-ratio was computed for various 

classes for various buffer sizes and the result is shown in 

Fig. 32. 

From Fig. 32 we see that providing a separate buffer for 

6LH and header words and partitioning the buffer into just 4 

classes, a buffer of 8 blocks/class results in a miss ratio 

of about 6 to 7 ̂ --without providing separate buffer for GLW 

and header words had resulted in a miss ratio of about 17% 

for 4 classes with 16 blocks/class (Fig. 29). Hence this 

results in an improvement of about 2.5 times in the miss 

ratio. 

From Fig. 30 we see that providing a separate buffer for 

GLH and header words, the miss ratio decreases to about 8% 

for 16 blocks for the terminal—about 2 times improvement in 
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the performance. 

From Fig. 33 we see that providing a separate buffer for 

6LH and allocating extra buffer for the system and terminal 

header words, for different processors, the miss ratio 

dramatically improves. The improvement can be seen by com­

paring Fig. 29 and Fig. 33. 

Processor traffic rate 

Fig. 34 illustrates the variation of average traffic 

rate for different processors with different number of blocks 

allotted to their buffers. As mentioned before, the figure 

of merit for the processor traffic rate is that it should be 

as low as possible. 

For MR, the traffic rate is quite high until its buffer 

contains 16 blocks—when the traffic rate dramatically 

reduces to very low value. After 16 blocks, an increase in 

the number of blocks does not significantly reduce its traf­

fic rate. 

For SS, the traffic rate reduces little from 1 to 4 

blocks and then remains constant till its buffer has 24 

blocks—after which an increase in number of blocks to 32 

results in a dramatic improvement in traffic rate. 

For TE, the traffic rate consistently declines with the 

increase of number of blocks. From Fig. 34 we see that about 

16 blocks for TR buffer yields a good traffic rate. 
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For CPf there is a sharp decline in the traffic rate 

from 2 to 3 blocks—after which the traffic rate decreases 

slowly until the buffer size is increased to 8 blocks—after 

which it decreases persistently. 

For IP, the traffic rate decreases from 2 to 4 blocks 

and then it remains almost constant. 

Traffic rate as mentioned before gives an idea about the 

usefulness of the blocks being transferred from the main mem­

ory to the buffer. Hence a high hit-ratio should imply a low 

traffic rate and vice versa. The figures obtained for the 

traffic rate are compatible with those obtained for the hit-

ratio data. 

Average block utilization 

Average block utilization is the average number of words 

of a block referenced between two successive block swaps. 

Fig. 35 illustrates the average block utilization for 

different processors with the number of blocks. A good 

figure of merit for average block utilization is that it 

should be very high and close to unity. 

For MB, the average block utilization remains low until 

its buffer contains 16 blocks—when it increases and remains 

constant. As low block utilization illustates the 

uselessness of extra words in the block, it is observed that 

about 16 blocks for the MR seem to be the optimum size— 

before any reast liable size h it-ratio is obtained. 
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The average block utilization is lowest for the SS. It 

is at its maximum value when its buffer has 2 blocks after 

which it decreases and remains constant till the buffer size 

is 24 blocks. 

For TB, the average block utilization increases 

persistently with the iac Initially the average block utili­

zation is about 14% with 2 blocks and it increases to about 

60% with 24 blocks. 

For IP, the average block utilization increases from 2 

to 8 blocks—after which it almost remains constant. 

Initially for 2 blocks the average block utilization is 

about 42% and it increases to about 75% for 16 blocks. 

For CP, the average block utilization is lowest for 2 

blocks. Increasing the buffer size to 3 blocks results in a 

sharp increase in the average block utilization. It keeps on 

increasing from 4 to 8 blocks—however the increase is not so 

sharp. Then again a big increase is encountered from 12 to 

16 blocks. 

For 2 blocks the average block utilization is about 

20%—and for 24 blocks the average block utilization in­

creases to about 85%. 

These results are also quite compatible with the hit-

ratio data. 
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Average buffer utilization 

Average buffer utilization is the average number of 

blocks of the buffer referenced at least once between two 

successive block swaps. This figure gives an idea about the 

usefulness of extra blocks in the buffer. 

The average buffer utilization for ME, CP, and SS in­

creases from 2 to 8 blocks and then remains almost constant 

(Fig. 35). 

For TE the average buffer utilization is lowest when it 

has 2 blocks in the buffer—after which it increases until it 

has about 16 blocks. The average block utilization remains 

constant till about 20 blocks and then decreases as the num­

ber of blocks is increased. 

For IP, the maximum buffer utilization is obtained for 8 

blocks after which it starts declining. 

From average buffer utilization point of view we see 

that not much is gained from increasing the buffer sizes for 

ME, CP, SS and TE to more than 12, 12, 12 and 16 blocks re­

spectively. 

Conclusion 

In this chapter hit-ratio data were obtained for differ­

ent buffer partitioning strategies for various buffer sizes. 

From the analysis it is seen that the best way of designing 

buffered memory system for SYMBOL-IIB like computing struc­

tures will be to allocate separate dedicated but sharable 
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buffer spaces to its different nultidedicated processors. 

The amount of buffer allotted to various processors is 

quite small and yet it yields a very good hit-ratio. The 

amount of a processor's activity and its address reference 

pattern seem to affect tremendously the decision for optimum 

buffer sizes for getting reasonable hit-ratio. 

Partitioning the buffer spaces on the processor basis 

results in a multihomogeneous buffer. Even though in comput­

ing structures like STNBOL-IIR the terminals do not share in­

formation or memory space, the processors are shared by them 

and a processor can work for only one terminal at any instant 

of time. Hence even though the buffers of the processors 

would be dedicated, for managing this buffered memory system 

the principle of global searching with local replacing should 

be used. 

The data were collected with programs running one at a 

time, on a single terminal only. The analysis, which was 

carried out for the processors, was also based on the assump­

tion that processor was serving one terminal at a time. 

Partitioning buffer space into separate homogeneous 

units for different processors for getting better hit-ratio 

leads to one of the important system concepts. Instead of 

all the processors sharing a common memory, now sufficient 

memory space can be assigned to each processor. However, the 

memory space assigned to these processors should be adeguate 
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and large enough for obtaining better hit-ratio. 

Obtaining a high hit-ratio is part of the solution of 

the whole problem. As mentioned before, one of the major as­

sumptions of the whole thesis was that the "main memory of 

SÏHBOL-IIR like computing structures is large enough so that 

speed and performance is not limited by the paging traffic" 

because, buffering is no solution to a virtual memory system 

which is limited by the page traffic. So this presumption of 

the existence of a large main memory with the capability of 

transferring a block of data at a time to the buffer would 

necessitate the main memory to be organized as an inter­

leaved system. So besides a high hit-ratio the other two im­

portant parameters are—a fast effective cycle time with min­

imum cost. Buffering should be tremendously cost-performance 

effective—otherwise it would lose all of its charm and im­

portance. In the next chapter a cost analysis of buffered 

memory systems for SYHBOL-IIH like computing structures is 

carried out and it is demonstrated that buffering seems to be 

the cheapest way of improving the performance. 

Besides the architectural organization and the principle 

of "locality", the program behaviour would also seem to have 

tremendous impact upon the organization and management of 

SYMBOL-IIR like computing structures. Since the interface 

unit is already built, it would be interesting to see the 

effect of different kinds of programs on the buffering 
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schemes. The effect of different users enviroaments upon the 

hit-ratio data is discussed farther in the chapter VI. 
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CHAPTER ?. COST PERFOBHAHCE ANALYSIS 

Introduction 

"At present day commercial systems cost rather than 

speed has become a dominant consideration for memory modules" 

(34) . 

An experimental buffered memory system for STHBOL-IIB 

like computing structures might look as in Fig. 37, This in­

volves the following: 

1. The buffer memory itself 

2. A buffer controller 

3. A directory 

4. A priority update list and 

5. The switching network. 

The switching network is for switching information be­

tween the outgoing data bus and various memory modules. 

The buffer memory controller, priority update list, 

directory and switching network add extra cost. To illus­

trate this extra cost increase, the cost of a buffered memory 

system using the above type of buffer is computed. 

The costs assumed are fairly typical for the state of 

the art technology. 

The main memory is thought of organized as core modules. 

The core costs are fairly typical for the present original 

equipment manufacture market. 
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The buffer memory itself can be thought of as a straight 

semiconductor memory (organized with relatively long words). 

Cost is computed essentially for two types of address 

translation schemes. Buffer cost is a function of the size 

of the buffer directory and update list and directory cost is 

a function of the type of address translation schemes. 

The major cost of the buffer memory is the memory 

itself. Directory, update list and switching network cost 

are not much. The size of the directory is a function of the 

address translation scheme. Even though a small variation in 

the cost of buffer directory will not make much difference to 

the total cost, the cost analysis is carried out for two dif­

ferent address translation schemes. 

Cost Analysis 

Let 

Y = Total number of virtual pages 

N = Number of main memory modules 

M = Number of pages/module 

B = Number of blocks/page 

w = Number of words/block 

n = Number of blocks in the buffer 

f = Number of flag bits/buffer directory word 

p = Number of page list bits 

Bcost = Buffer cost/bit 

Hcost = Main memory cost/bit 
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Pcost = Priority update list cost/bit 

Dcost = Directory cost/bit 

Buffer Controller Cost = BC 

then 

Main Memory Capacity = {H*M*B*ir) bits 

Buffer Capacity = ( n * B * w ) bits 

As mentioned before the size of the buffer directory would 

depend upon the type of the addressing scheme. 

Address Scheme I: 

Using this scheme buffer directory size = 

n * ( log 2 (M*N) + log^ N + B + f) bits 

Address Scheme II: 

Using this scheme buffer directory size = 

n * ( log 2 (H*N) • log^ N • B + f + log ̂  V) bits 

Based on this a cost analysis was carried out. Buffer 

cost for varions buffer sizes, for two different block sizes 

and these two different address schemes were computed and are 

illustrated in Table I to Table III. 

From these tables we see that for buffer size of 64 

blocks, and block size of 8 words, the buffer cost varies 

from about 15% to 2% of the main memory cost for various mem­

ory sizes for address scheme I and it varies from about 18% 

to 2.25% of the main memory costs for address scheme II. 

Address scheme II does not cost much mora but saves one 

memory cycle for address transformation. 
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Table I. Cost Analysis 

Main Memory (Core) 0,7<?/bit 
Buffer (Semiconductor) 4<:/bit 
Buffer Directory lOf/bit 
Priority Update List 10*/bit 

Mai.n Memory Buffer Size = 64 Blocks 

Capacity Cost 
Block Size = 8 Words Block Size = 4 Words Capacity Cost 

Fraction 
of Main 

Cost 
Fraction 

of Main 
Cost % of 

Main 

32K Words 

256K^Bytes $14,680 
1/64 

Scheme I $2484 14.7 

1/128 

Scheme I $930 6.35 32K Words 

256K^Bytes $14,680 
1/64 

Scheme II $2585 17.6 

1/128 

Scheme II $1032 7.05 

64K Wards 

256K Bytes 

$29,360 1/128 
Scheme I $2490 8.5 

1/256 
Scheme I $937 3.2 64K Wards 

256K Bytes 

$29,360 1/128 

Scheme II $2591 8.85 

1/256 

Scheme II $1039 3.54 

128K Words 

1,024K Bytes 

$58,720 1/256 
Scheme I $2496 4.25 

1/512 

Scheme I $944 1.61 128K Words 

1,024K Bytes 

$58,720 1/256 

Scheme II $2600 4.45 

1/512 

Scheme II $1046 1.78 

256K Words 

2,048K liytes 
$117,440 1/512 

Scheme I $2500 2.14 

1/1024 

Scheme I $951 0.8 256K Words 

2,048K liytes 
$117,440 1/512 

Scheme II $2606 2.22 

1/1024 

Scheme II $1053 0.9 
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Table II. Cost Analysis 

Main Memory (Core) 0,7ç/blt 
Buffer (Semiconductor) 4^/bit 
Buffer Directory lOç/bit 
Priority Update List lOç/bit 

Main I'Cemory Buffer Size 128 nlop.lfs 

Capacity Cost 
Block Size = 8 Words Block Size = 4 Words 

Capacity Cost Fraction 

of Main 
Cost % of 

Main 

Fraction 

of Main 
Cost % of 

Main 

32K Words 

256K Bytes 
$14,680 1/32 

Scheme I $3990 27.2 
1/64 . 

Scheme I $1793 12.2 32K Words 

256K Bytes 
$14,680 1/32 

Scheme II $4195 28.6 

1/64 . 

Scheme II $1997 13.5 

64K Words 

512K Bytes 
$29,360 1/64 

Scheme I $4005 13.7 

1/128 

Scheme I $1806 6.15 
64K Words 

512K Bytes 
$29,360 1/64 

Scheme II $4210 14.3 

1/128 

Scheme II $2010 6.85 

128K Words 

1,024K Bytes 
$58,720 

1/128 
Scheme I $4020 6.55 

1/256 

Scheme I $1819 3.1 
128K Words 

1,024K Bytes 
$58,720 

1/128 

Scheme IX $4225 7.25 

1/256 

Scheme II $2023 3.46 

256K Woxds 

2,048K Bytes 
$117,440 1/256 

Scheme I $4035 3.45 
1/512 

Scheme I $1832 1.5 256K Woxds 

2,048K Bytes 
$117,440 

Scheme II $4240 3.53 Scheme II $2036 1.75 
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Table III, Cost Analysis 

Main Memory (Core) 0.7<?/blt 
Buffer (Semiconductor) 4o/blt 
Directory 10<~/bit 
Priority Update List lOo/bit 

Main Memory Buffer Size = 256 Blocks 

Capacity Cost B Lock Size = 8 Words Block Size = 4 Words Capacity Cost 
Fraction 

of Main 
Cost % of 

Main 
Fraction 
of Main 

Cost % of 
Main 

32K Words 

256K Bytes 
$14,680 1/16 

Scheme 1 $7036 48 
1/32 

Scheme I $3541 24.2 
32K Words 

256K Bytes 
$14,680 1/16 

Scheme II $7446 • 51 

1/32 

Scheme II $3855 26.2 

64K Words 

512K Bytes 
$29,360 1/32 

Scheme I $7060 24 
1/64 

Scheme I $3567 12.2 
64K Words 

512K Bytes 
$29,360 1/32 

Scheme II $7470 25.5 

1/64 

Scheme II $3881 13.0 

128K Woi ds 

lo24K BytCiS 
$58,720 1/64 

Scheme I $7085 ? 12.5 

1/128 

Scheme I $3593 6.1 128K Woi ds 

lo24K BytCiS 
$58,720 1/64 

Scheme II 
$7495 - 12.75 

1/128 

Scheme II $3907 6.6 

256K Words 

2,048K llytes 
$117,440 

1/128 

Scheme I $7120 " 6 .1 

1/256 

Scheme I $3619 3.1 256K Words 

2,048K llytes 
$117,440 

1/128 

Scheme II $7520 ^6.4 

1/256 

Scheme II $3933 3.3 
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Keeping the main memory size fixed and increasing (de­

creasing) the buffer size increases (decreases) the % of buf­

fer cost (as compared to the main memory cost) linearly. 

As was observed in chapter IV, 6U blocks for the whole 

buffer for SYHBOL-IIB like computing structures would be more 

than enough for yielding a high hit-ratio. Prom the cost 

analysis we see that for a main memory of 256K words or 512K 

bytes ( 8 times the capacity of the present SIHBOL-IIR main 

memory) this buffer of 64 blocks would constitute only about 

9X of the main memory cost and still would give hit-ratio 

very close to unity. 

This illustrates the tremendous cost effectiveness of 

buffering STHBOL-llR like computing structures. 
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CHAPTER VI. COHCLOSION AHD DISCUSSIONS 

With the advancement of the LSI technology and the 

persistent decline in the cost of hardware (with a consistent 

increase in the cost of software) more and more emphasis and 

thought have been (and will be) given to reexamining the tra­

ditional hardware/software boundary. This resxamination has 

led (and will lead) computer system designers to use as much 

hardware as possible to reduce the whole system programming 

cost and to obtain better performance. SÏHBOL-IIR computing 

system is one of the results of this reexamination. 

This thesis has explored the applicability of buffering 

such multidedicated processors, time-sharing systems. It is 

seen that the architectural organization of the whole system 

has tremendous impact on the organization and management of 

its buffered memory systems. Three alternative ways of pro­

viding buffer—a buffer for the whole system, buffers for the 

terminals or buffer for each dedicated processor are investi­

gated and it is demonstrated that allocating a small, 

dedicated but sharable buffer to its different dedicated 

processors would result in a significant increase in perform­

ance with a very insignificant increase in the cost. 

Fig. 25 and Fig. 33 are the most important results of 

the whole investigation. From Fig. 25 we see that, a buffer 

of only 2K bytes yields a hit-ratio of 97%. In this case, 

small dedicated but sharable buffer space is provided for 
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each dedicated processor. Also from Fig. 25 we see that 

there is an optimum buffer size of 32 blocks for SYMBOL-IIR 

like computing structures. Allocating larger buffer sizes to 

different dedicated processors and thus exceeding the total 

capacity of 32 blocks does not result in any increase of 

performance—rather the hit-ratio tends to decrease. 

From Fig. 33 we see that providing small additional buf­

fer space for the data linking words and the system and ter­

minal header words results in an incredible hit-ratio—99.7%. 

The buffer can be visualized now as consisting of a data 

buffer, a data linking buffer and sytsem and terminal header 

buffer. Achievement of such high hit-ratio with such a small 

buffer illustrates the effectiveness of dedicated and 

sharable buffer for a highly unconventional computing struc­

tures like SÏMBOL-IIB. 

Also it is seen that, for SYHBOL-IIR like computing 

structures, the behaviour (i.e., the address reference pat­

tern) of processors is tremendously affected by the storage 

organization and management of its virtual memory system and 

it is seen from Fig. 17 and Fig. 21 that the address 

referencing pattern is more important than the total amount 

of activity of the processor. This observation leads to one 

of the very important conclusion that the over all hit-ratio 

would not be affected very much by the variation of the users 

environments. Depending upon the size and type of programs. 
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the total amount of activity of different processors might 

vary, but as the basic behaviour of different dedicated proc­

essors would essentially remain the same, there would be only 

small perturbation on the over all hit-ratio. Because of 

this important observation, even though the experimental in­

vestigation was limited only to small scientific users envi­

ronments, we can boldly predict that the results obtained ia 

this investigation are extendable to other different environ­

ments. However for conventional computer systems, the hit-

ratio data is affected very strongly by the behaviour of pro­

grams and users environments (2,14,17,18). 

Also it is shown that for SYHBOL-IIR like computing 

structures, besides the principle of "locality" its 

architectural organization and over all storage management 

has significant impact upon the organization and management 

of its buffered memory—and hence the results of this inves­

tigation could be extendable to future computer systems 

consisting of multi homogeneous or heterogeneous processors-*-

as long as those systems would have the similar storage 

management principles of SïHBOL-IIB system. 

This concept of small, multidedicated buffer for 

multidedicated processors for SïMBOL-IIB like computing 

structures leads also to one of the very important system 

concepts that—instead of all the dedicated processors shar­

ing the same common memory, if small dedicated fast memories 
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are provided for these processors and if the auxiliary memory 

is quite fast enough to transfer data at reasonable fast 

rate, then the whole main memory could be completely 

eliminated. 

How according to many computer experts, P and H channel 

nos will dominate the computer main frame memories, taking 

nearly 60% of total bits by the late 1970s. Core which had 

100 percent of main frame memory in 1960 had declined to 

about 79% in 1972, about 65% in 1973 and is projected to have 

less than 10% by 1980. 

Even if HOS memory replaces core as the main frame memo­

ry, for larger systems the hybrid approach—or the approach 

of buffering—a slow large HOS memory supported by a fast, 

small bipolar memory would seem to be the best solution. 

At least for another decade, the approach of buffering 

is going to stay and if future systems tend to achieve 

multiprocessing by the use of multidedicated processors—then 

separate dedicated buffers for these dedicated processsors 

would be the best and cheapest way of improving the perform­

ance. 

But it should be mentioned that buffering is no solution 

to a virtual memory system which is limited by the page traf­

fic between its main memory and the auxiliary memory. Hence 

when we are talking about buffering a virtual memory system 

like SYMBOL-IIR we are implying that the system has the 
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provision of a large main memory and the system performance 

is not limited by the page traffic but the spaed of the main 

memory. In systems like that buffering is the cheapest and 

most effective way for improving the performance at very 

insignificant increase in cost. 
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