
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1974

Applicability of buffered main memory to
SYMBOL-IIR like computing structures
Om Prakash Agrawal
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Agrawal, Om Prakash, "Applicability of buffered main memory to SYMBOL-IIR like computing structures " (1974). Retrospective
Theses and Dissertations. 6319.
https://lib.dr.iastate.edu/rtd/6319

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/6319?utm_source=lib.dr.iastate.edu%2Frtd%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This material was produced from a microfilm copy of the orignal document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality Is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it
is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being
photographed the photographer followed a definite method in
"sectioning" the material. It is customary to begin photoing at the upper
left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete.

4. The majority of users indicate that the textual content is of greatest value,
however, a somewhat higher quality reproduction could be made from
"photographs" if essential to the understanding of the dissertation. Silver
prints of "photographs" may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as
received.

Xerox University IMicrofilms
300 North Zeeb Road
Ann Arbor, Michigan 48106

www.manaraa.com

%
m

75-3283

AGRAWAL, Om Prakash, 1946-
APPLICABILITY OF BUFFERED MAIN MEMORY TO
SYMBOL-IlR LIKE COMPUTING STRUCTURES.

• \

lowa State University, Ph.D., 1974
Engineering, electrical

Xerox University IMiCrOfllmS, Ann Arbor, Michigan 48106

I

© Copyright by
OM PRAKASH AGRAWAL

1974

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.

www.manaraa.com

Applicability of buffered main oesory to STMBOL-lIfi

like computing structures

by

OB Prakash Agraval

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering

Approved

In Charge of Major Work

For the Major Department

For the Graduate College

Towa state Oniversity
Ames, Iowa

1974

Copyright @ Dm Prakash Agrawal, 1974. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

I

TABLE OF CONTENTS

Page

CHAPTER I. INTRODUCTION 1

Problem Defiaitioa 5

Specific Goals 5

Significance of the Problem 6

Approaches to Dissertation Study 7

Significant Results 7

CHAPTER II. HISTORICAL PERSPECTIVE AND RELATED
RESEARCH 9

Innovations for Speeding up the Memory 9

Related Research 17

CHAPTER III. APPLICABILITY OF BUFFERED MAIN MEMORY TO
SYMBOL-IIR LIKE COMPUTING STRUCTURES 20

Introduction to the SYMBOL-IIR Computing Structure 20

Virtual Memory System of the SYMBOL-IIR 22

Introduction to SYMBOL-IIR like Computing Structures 26

Main Memory Organization of SYMBOL-IIR
like Computing Structures 30

Buffer Management and Organization of SYMBOL-IIR
like Computing Structures 32

Comments on Buffered System Organization 60

CHAPTER IV. EXPERIMENTAL ANALYSIS AND RESULTS 62

Introduction 62

Controlling Factors 62

Design of the Experiment 65

Factors to be Analyzed and their Figures of Merit 68

www.manaraa.com

iii

Experimental Results 71

Conclusion 108

CHAFPEfi 7. COST PERFOBMASCE ANALYSIS 112

Introduction 112

Cost Analysis 114

CHAPTER VI. COSCLUSION AND DISCOSSIONS 120

ACKNORLEDGHENfS 125

BIBLIOGRAPHY 127

www.manaraa.com

1

CHAPTER I. IHTRODOCTION

The persistent demand for getting more performance for

less cost has brought very rapid and profound changes la the

speed of both the processors and the memory systems of com­

puter systems. Over the last few decades the overall memory

speed has been Improved by a factor of 10 or 20 and the proc­

essing power has been consistently increasing at the rate of

100 times per decade (32,33). In spite of technological

growth in the field of both the processors and the memory

systems, there has been a severe mismatch between the speed

of the processors and the main memory. This gap of speed has

caused the performance of the present day computer systems to

be limited by the speed and the capacity of the memory

system.

In order that the performance of the computer system nat

be limited by the memory, there has been a constant effort to

bridge this gap of speed between the processors and the main

memory. This constant effort has produced a tremendous

impact on the growth of technology and has given birth to a

variety of technological and architectural innovations. Out

of all these innovations, the concept of "buffering", a term

also synonymous with "cache", has been found to be

tremendously attractive and appealing. This concept of

"buffering", implemented for the first time on a production

system in 1968 in the IBM 360/85, a large scale computer

www.manaraa.com

2

system, gave the user a machine which vas capable of operat­

ing at the speed of the processor, with the cost of the slow

backing store, and whose performance was no longer limited by

the speed of the main memory (24).

The philosophy behind the concept of "buffering" is to

use a quite fast and relatively small memory in between the

processor and the main memory. Serving as a transparent

bridge between the processor and the main memory, this "buf­

fer" gives the illusion of a very large main memory operating

at the speed of the "buffer", to the users. Ihe concept of

"buffering" has been found to be immensely attractive essen­

tially because of two reasons—programming and economics.

The programming reason is that most of the conventional

users' programs tend to follow the principle of "locality",

that is at any inst&nt of time the addressing pattern of a

program tends to be localized; the economical reason being

that technology of today has not been able to provide a

faster, larger and cheaper memory system operating at the

speed of the processor. The memory cost seems to be

inversely proportional to the speed and directly proportional

to the capacity. Hence, larger and faster memories tend to

be quite expensive.

"Buffering" tends to provide a localized subset of in­

formation at a faster speed and cheaper price to the proces­

sor and provides an illusion of a large main memory operating

www.manaraa.com

3

at the speed of the buffer.

As long as these two characteristics are encountered the

approach of "buffering" would seem to be the most effective

solution of matching the speed between the processor and the

main memory. For these reasons, "buffering" has been found

to be immensely cost effective in large scale computer

systems. Also, because of conceptual simplicity, the

buffered memory approach has even been tried for mini­

computers and has been found to be cost performance effec­

tive.

However, so far the approach of "buffering" has been

tried for mostly conventional, software dominated von Neumann

machines, and the "buffer" has been provided for the Central

Processor only—which is supposed to be the most

indispensable processor in the conventional computer system.

Recently, the consistent decline in the cost of hardware

components (due to rapid progress in technology) and the con­

sistent increase in the cost of software has led the computer

architects to think of designing highly hardware oriented

decentralized computing structures. The STHBOL-IIR computer

is one result of this new hardware/software analysis.

The SYHBOL-llR computing structure can be characterized

as a radical departure from conventional software dominated

von Neumann machines. It is a highly decentralized system,

organized as a network of dedicated or non-homogeneous or

www.manaraa.com

4

autonomous processors (also known as Functional Units) each

designed to do certain specific tasks. Besides this feature,

most of the functions like memory management, system

supervision, etc. are done in hardware (36,38); Even though

it is a novel architectural milestone in the history of com­

puter systems, the SIBBOI-IIR computer has a speed disparity

between its processors and the main memory and between the

main memory and the paging disk. These gaps make the system

performance intuitively bounded by the speed of the memory

system.

This thesis is concerned with the first of the gaps. If

speed improvement is desired for the main memory, then there

are two alternatives:

1. Either replace the whole main memory by a faster

memory or

2. Use a buffered memory approach to improve the per­

formance.

The second alternative is better than the.first one be­

cause the second approach would tend to achieve about the

same performance as the first approach with much less cost.

www.manaraa.com

5

Problem Definition

The tremendous success of the "cache" approach with con­

ventional computing structures (both large and mini) leads

one to think that it would work for any kind of computing

structure. Even though one would think of using the same ap­

proach in unconventional machines, no one has attempted so

far to illustrate the designing of buffered memory systems

for unconventional structures. Various interesting questions

which are yet to be answered are:

1. Whether a "buffer*' approach would be cost-

performance effective also for an unconventional

architectured computing structure.

2. Whether the special architectural organization of

the unconventional machine would have any effect at all on

the organization and the management of the "buffered" memory,

and if so, what whould be the optimum "buffer" configuration

and

3. If buffering is the best solution for improving

the speed of an unconventional machine, how should it be or­

ganized and managed?

Specific Goals

Specific goals of this dissertation which are further

elaborated later are;

1. To analyze the effect of the architectural organi­

zation of an unconventional computing structure upon the

www.manaraa.com

6

design and management of its "buffered" memory.

2. To study whether in a multidedicated, non-

homogeneous time-sharing computing system the buffer should

be organized as a homogeneous unit or as a heterogeneous

unit.

3. To study whether the buffer should be partitioned

into equal sizes for different classes or whether the amount

of buffer allotted to a particular class should vary depend­

ing upon its need and demand.

4. To study the overall organization and management

of "buffered" memory.

5. To carry out a cost, speed and performance analy­

sis for various buffer sizes, and various algorithms to see

whether or not it is cost effective.

Significance of the Problem

The primary significance of this work is to provide ad­

ditional insight into and shed additional light on several

key problems in the design and management of "buffered main

memory" for highly unconventional computing structures. The

SYHBOL-IIR computer, because of its physical existence and

availability serves only as a model or a vehicle. Emphasis

has been placed on computing structures, having the similar

major architectural philosophies as that of STSBOL-llB, and

the attempt has been made to make the solution as general as

possible. The chief significance of the problem could be

www.manaraa.com

7

stated as follows:

"Given a computing structure like STHBOL-^IIR how

should the buffered memory be designed and managed so that it

is efficient, cheap and flexible enough?"

Hence, the title of the dissertation is "Applicability

of buffered main memory to SïHBOL-IIR like computing struc­

tures" and not "Applicability of buffered main memory to the

SYMBOL-IIR computer".

Approaches to Dissertaion Study

The problem has been approached as follows:

1. A study of the virtual memory system and the

architectural organization of the SYMBOL-IIR and SYMBOL-IIR

like computing structures and its effect on the design and

management of the "buffered" memory is undertaken.

2. A program mix to generate suitable address se­

quences for computing the effective hit-ratio for various

buffer configurations and algorithms, by simulation, is se­

lected.

3. Finally a cost performance analysis of buffered

system for SYMBOL-IIR like systems is made.

Significant Results

Three alternative ways of buffering SYMBOL-IIR like com­

puting structures are investigated in detail. These three

ways are—a buffer for the whole system, buffers for the ter­

minals, or buffer for each dedicated processor. It is shown

www.manaraa.com

8

that allocation of dedicated, sharable buffer space to each

dedicated processor results in a very cheap vay of improving

performance significantly.

It is also demonstrated that besides the principle of

"locality", the architectural organization of the whole

system affects tremendously the design and management of the

whole buffered memory system.

It is also shown that as long as large high speed memo­

ries are significantly more expensive than slower ones and

the principle of "locality" is observed for for most of the

users programs, buffering is the cheapest way for improving

performance—even for highly unconventional computing struc­

tures like SÏHB01-IIH.

www.manaraa.com

9

CHAPTER II. HISTORICAL PERSPECTIVE AND RELATED RESEARCH

Innovations for Speeding up the Haaory

Various approaches have been implemented in various

systems to reduce the effective access time for data and in­

structions to less than the fall memory cycle time.

The approaches which are more common are the use of:

1. Multiple interleaved memory banks with single

entry points,

2. Multiple interleaved memory banks with multiple

entry points, and

3. The use of scratch pad

One of the major disadvantages of organizing memory as a

single module consisting of a homogeneous collection of

addressable storage is that it imposes a speed limitation,

particularly in high speed systems, because a single module

is internally a single bus scheme, that is only one access

can take place at a time. Also, when the single module is

serving a request, all other requests for it have to be

locked out thus resulting in a large delay. Hence, large

systems have attempted to reduce memory delays by dividing

total storage into banks or modules of storage where each

bank now contains a subset of the memory addresses. The

partitioning of memory into several banks allows all the

banks to operate simultaneously, delivering words to

requestors (processors) asynchronously, without much lock out

www.manaraa.com

10

or interference, since each bank can still serve only one

request at a time, lock out can still occur when the requests

contend for access to the same bank.

The effectiveness of banking memory therefore depends in

large measure on the distribution of addresses being generat­

ed by asynchronous units in the system, and also on the

ability of the storage control system to queue requests on

the busy modules.

The banking organization could be classified as either

"high bit" banking or "low bit" banking depending upon wheth­

er the selection of a memory bank depends upon the high order

or low order bits of an address. High order banking sort of

partitions memory functionally. This scheme was implemented

in Univac 1107 and 1108 where memory was sort of divided into

I (Instruction) and D (Data) banks. Also known as FIFO and

UFO organizational structure, this was used in RCA*s BIZHAC

computer. The LIFO store technique was also employed in the

Aeroneutronic Logic Evaluator, Burroughs 35000, the English

Electric KDF-9 and the Ferranti Atlas computers.

Low order bit banking, also known as conventional inter­

leaving, arranges the address structure so that adjacent

words are stored in adjacent modules. Each independent

module contains its own address decoding, driving circuits,

data read out sense hardware and data register. By enabling

multiple accesses to proceed concurrently storage bandwidth

www.manaraa.com

11

is increased.

The number of modules that can operate concurrently is a

measure of the speed improvement over a singla module system.

The depth of interleaving required to support a desired

concurrency is a function of the storage cycle time, the

processor memory request rate, and the desired effective

storage cycle time.

Multiple interleaved memory banks with multiple entry

points is the scheme of interleaving so that different memory

modules can be accessed from different entry points. These

different entry points could be connected to separate proces­

sors in a multiprocessing system. Nov, the processors

communicate with the memory through different entry points,

through different communicating address and data registers.

The technique of scratch pad

Another approach of improving the performance of memory

systems is the use of high speed control or scratch pad memo­

ries. This approach uses a small number of registers which

are used to form a very small high speed memory and are used

for storing temporary or intermediate results, frequently

used data, constants and short subroutines which need to be

iterated.

www.manaraa.com

12

Pitfalls of the above approaches and the motivations for the

bttffered memory systems

Efforts such as that of pipelining (increase of overlap)

greater local storage buffering (look ahead), multiple pro­

gramming, parallel processing, deeper storage interleaving,

more sophistication in the handling of branches, virtual mem­

ory, time-sharing and other Improvements in the processors

have been nice technological innovations for improving the

performance of the computer system. However, all these at­

tempts are only partially successful in bridging the gap be­

tween the speed of the processor and that of the main memory,

and in making the computer performance not memory bounded.

One of the most important ingredients of a high

throughput machine is to provide it with a very large main

storage capacity, preferably operating at the speed of the

processor, so that the machine will not be bounded by the

speed of the memory and the processor could then issue a mem­

ory request at each and every processor cycle. However, it

has not been feasible to provide a large main storage with a.

cycle time commensurate with the processor speed. Fastest

memory devices are the most expensive per bit storage and the

slowest memory devices are the cheapest per bit storage.

Because of these cost-speed trade-offs all the previous

attempts of matching the gap between the processor speed and

main memory speed has had resulted in a

www.manaraa.com

13

microsecond/millisecond multilevel hierarchical virtual memo­

ry storage system, even though it was realized that to match

the gap perfectly a nanosecond/microsecond hierarchy is the

only solution.

This concept of nanosecond/microsecond hierarchy is

nothing new. Its implementation had not been feasible only

because of the lack of a suitable technology. In fact as

early as 1962, Bloom, Cohen and Porter (6) had proposed a

technique known as "Look aside" memory to improve the logic

to memory speed ratio by the use of an associative memory.

Lee had tried to simulate the concept of implementing "Look

aside" memory and found that by using an associative memory

of about 256 words of 100 nanosecond cycle time, an effective

cycle time of about 350—400 nanoseconds could be obtained in

a memory system—whose main memory cycle time was 1

microsecond (21, 22,23). Wilkes, in 1965, had proposed a sim­

ilar concept like this as a "slave" memory, by proposing a

fast core memcry acting as a slave to a slower core memory in

such a way that in practical cases the effective access time

was nearer to that of the fast memory than to that of the

slow memory (44) .

This concept of nanosecond/microsecond hierarchy was

also implemented in embryonic form in other computers like

Ferranti Atlas (20) and ETL-Hk-6 (39). In addition to the

main immediate access stores of ferrite cores. Atlas had also

www.manaraa.com

14

several thousand words of an entirely novel type of storage

to which access was extremely fast (0.2 microsecond compared

to that of 0.75 microsecond of ferrite core). This store

consisted of a wire mesh with small ferrite plugs inserted in

the spaces, the contents of the store being determined by the

presence or the absence of the plugs. However, this was es­

sentially used as a read-only storage and used essentially

for storing subroutines and a large number of analytical

functions only.

ETL Mk-6 also used a memory hierarchy of 3 levels

consisting of a drum, core, and a tunnel diode memory of 250

nanosecond cycle time. The fastest memory was partitioned

into a program stack, arithmetic stack and index registers—

out of which the latter two only were accessible to the pro­

grammer. The idea of program stack was essentially to con­

tain spaces for short loops.

All these techniques had been proposed and implemented

in embryonic form only in certain computers. They had not

been implemented in any large scale computer system because
• t

of lack of suitable technology. With the advancement of

technology and with the availability of monolithic memory

technology, the nanosecond/microsecond hierarchy was imple­

mented for the first time in the IBM 360/85, a large scale

computer system, in 1968 and was termed as Gcache" system.

In a cache based computer system, a fast and small memory

www.manaraa.com

15

known as cache, interposed between the Cental Processor and

the main memory, serves as the transparent bridge between

their speeds. It is transparent in the sense that it is

invisible to the user that is sort of hidden from him (Cache

means hidden), and hence is not addressable by him. However

its purpose is to make available to the processor, the pool

of information currently being needed by it. However as the

buffer memory is quite small it can't hold a large amount of

information. The "cache" gives the illusion of having a

large main memory operating at the speed of the "cache".

Hence the processor tends to operate with a mamory of cache

speed but with a cost of that of main memory. This configu­

ration has analogies with other systems employing memory hi­

erarchies such as paged virtual memory systems. In contrast

with this latter, however

1. A cache based memory system has a hierarchy of

nanosecond/microsecond level, where as a paged virtual memory

system has microsecond/millisecond hierarchy.

2. Cache deals with smaller blocks of data.

3. Cache provides a smaller ratio of memory access

times (5 or 10 to 1 rather than 100 to 1) and because of this

characteristic, a processor remains idle (that is does not

switch to another task) while blocks of data are being trans­

ferred from main memory to cache and

4. A cache based system enhances the effective speed.

www.manaraa.com

16

where as a paged virtual memory system tends to enhance the

apparent size of the memory.

The reason cache memory works so nicely with a conven­

tional computer system architecture is essentially one of

programming—generally users programs tend to follow the

principle of "locality", that is addressing pattern of a pro­

gram is not distributed uniformly through the whole memory

capacity, but at different intervals of time it tends to be

localized to a particular subset of memory. Ihis principle

is known as "locality of reference". Usually programs tend

to have two kinds of locality of reference--"spatial locali­

ty" and "temporal locality" (25). This "locality of refer­

ence" principle illustrates that if a block of words is

brought from main memory to cache, then the probability of

words in cache to be used next by the program are very high

and then they would be accessed at cache memory speed instead

of the main memory speed. This property has had significant

impact upon the architectural design of computer systems.

This very principle has given birth to the concept of the

"Working Set" model of program behaviour (11) and also to the

principle of paging in virtual memory systems.

Paged virtual memory systems tend to achieve the speed

of main memory at the cost of the auxiliary memory, whereas

cache memory systems tend to achieve the speed of cache memo­

ry at the cost of the main memory and the auxiliary memory.

www.manaraa.com

17

Belated Research

Trying to implement a "buffer" memory for a large scale

computer system, for the first time, Liptay shoved that a

"cache" memory of 16K bytes of storage (extendible to 24K

bytes or 32K bytes) and of 80 nanosecond cycle time, operat­

ing vith a main memory of 512K to 4096K bytes and cycle time

of 1.04 microsecond, was equivalent in performance to 81% of

the performance (in average) of a memory system consisting of

512K to 4096K bytes operating at the "cache" speed (24).

"Great effort and thousands of hours of machine time have

been expanded in proving the feasibility of a buffer

technique for the IBM system/360 model 85" (10). Since its

inception in 360/85, cache memory has been used in 360/195,

370/155, 165 and 195 models, and there have been numerous in­

vestigations for the applicability and design considerations

of buffered memory systems for various kinds of computer

systems.

Conti (10) and Mattson et al. (27,28) have proposed and

developed various techniques for evaluating hierarchical

storage systems (including high speed buffer storage) and

their system effectiveness. The stack algorithm proposed by

Mattson et al. (27,28) can be used essentially for evaluating

variable class, variable page size, multilevel memory

systems, ârora and Wu (1) have tried to study the perform­

ance of a cache memory system by analyzing statistical

www.manaraa.com

18

quantification of instructions and operand traces. They have

also tried to investigate parameters which could alio* simu­

lation of various non-existing environments. Hattson (26),

Kaplan and Binder (19), and Meade (29,30) have conducted ex­

tensive studies on the effects of buffer size and block size

on the hit ratio for a variety of computing environments.

Heade (31) has discussed about designing various parameters

of a buffered memory system in an excellent article in Elec­

tronics. Bell and Casaseat (3,4) tried to investigate the

applicability of buffered memory systems for mini-computers

and came to the conclusion that a performance gain of 5 or

more can be achieved at the cost increase of 2 or less for

PDF 8/E computer systems. Pohm et al. (34,35) have tried to

investigate the applicability of buffered memory systems for

both large and mini-computer systems, and have demonstrated

that buffering a 500K bytes main memory would result in a

300% improvement in performance with a cost increase of 8%.

Bersamian and DeCegama have studied system design considera­

tions of cache memories on a multiprogramming system and have

come to a conclusion that "hit probability may significantly

decline in multiprogramming systems with high program

switching rate. &s a result the performance afficiency of

cache may be negligible" (5) .

In a nutshell, in all the studies taken so far buffering

seems to be immensely cost-performance attractive for both

www.manaraa.com

19

large and mini computer systems. However most of the re­

search for buffering has been concentrated on conventional

computing systems, and buffer space has been provided for the

Central Processor only. As far as the author knows, only in

a super Japanese computer an effort has been made to provide

separate buffer area for the basic processor and the I/O

Processor (of the Central Processor) (9). The speed and

capacity of the buffers for these two different processors

are however different.

One of the major goals of this dissertation is to inves­

tigate the applicability of separate dedicated buffer space

for different dedicated processors of a multidedicated proc­

essors computing system.

www.manaraa.com

20

CHAPTER III. APPLICABILITY OF BOFFEBBD MAIN MEMORY TO

SYMBOL-IIR LIKE COMPUTING STRUCTORES

Introduction to the SYMBOL-IIR Computing Structure

Before considering the applicability of buffered main

memory to SYMBOL-IIR like computing structures it is a good

idea to discuss briefly the existing SYMBOL-IIR computing

system. The SYMBOL-IIR computing system is a time-sharing

virtual memory computer system, consisting of 7 dedicated or

autonomous processors all sharing the same virtual memory

(Fig. 1) • The access to virtual memory of thsse dedicated

processors is controlled by another dedicated processor

called the Memory Controller. The purpose of this processor

is to allocate memory access dynamically to different proces­

sors on a priority basis. Any time a processor needs access

to main memory, it raises its priority line tailing Memory

Controller that it needs access to memory. If it happens to

be the processor having highest priority trying to access

memory at that time, the access to memory is granted. Howev­

er, if other processors with higher priorities than it are

also trying to access the memory at the same time, then it

has to wait until all the requests for higher priority proc­

essors are satisfied. The priorities of these different

dedicated processors are fixed, that is they are static and

do not vary dynamically. The priorities are assigned on the

basis of relative importance of each dedicated processor.

www.manaraa.com

21

Disk Controller Memory Controller

Control

Data

Core
Memory

— Memory Reclaimer (MR)

Translator (TR)

Input/Output Processor (IP)

Channel Controller (CC)

Central Processor (CP)

System Supervisor (SS)

Disk

Fig. 1. SÏMBOL-IIR Systsa

www.manaraa.com

22

The STHBOL-lIB computing structure is a radical

departure from conventional software dominated von Neumann

machines. It is a highly hardware oriented machine, and its

major architectural philosophy is to implement, in hardware,

a variety of features which are usually implemented by soft­

ware in conventional computing structures. Some of these in­

teresting features are dynamic memory allocation and reclama­

tion, dynamically variable field lengths and structures, au­

tomatic memory management and time-sharing supervision,

direct symbolic addressing, alpha numeric field manipulation,

direct text editing, etc. (3 6,38).

Virtual Memory System of the SYHBOL-IIR

In a buffered virtual memory system, the architectural

organization of the virtual memory system has tremendous

impact upon the organization of its buffered memory. Hence

before discussing the buffered virtual memory system of

SYHBOL-IIR like computing structures, the virtual memory

system of the STHBOL-IIB computing system, and S' » of its

characteristics are discussed. Virtual memory system of the

existing SYHBOL-IIR computer is organized as a two level

paged memory system--the first level being a core memory

consisting of 32 pages, and the second level being a disc

with total capacity of 800 pages. Out of 32 pages of

physical core one page is reserved for system usage and is

known as the system header page, and three pages are used for

www.manaraa.com

23

terminal header information. The rest of the pages of the

core are used as virtual data pages by different processors

for different terminals (36, 38) (Fig. 2).

Page organization

Each virtual page is 25 6 words, and is organized as 32

groups, where one group is equal to 8 words and is the basic

quantum of memory space allocated dynamically by the memory

controller (37,45). Since memory space is allocated dynami­

cally, the groups allotted to a processor by the memory

controller can cross logical page boundaries, and since ex­

tensive list manipulation is done in the system to keep track

of virtual memory space, each group has a group link word as­

sociated with it. The group link word contains information

about the forward link of the present group to the next group

and also the backward link of the group. These links are

maintained dynamically by the memory controller. In SYMBOL-

IIR group link words of a group are maintained in the same

virtual page as the group itself. Choosing the group size to

be 8 words and also having the group link words in the same

page makes each virtual data page of SYMBOL-IIR look like

(Fig. 3) . The virtual data page has 28 groups of data, 28

group link words and 4 words of page header information.

www.manaraa.com

24

System Header Page

Terminal Header Pages

Data Pages

1 Page

3 Pages

28 Pages

Fig. 2. Main Hemocy of the SYMBOL-IIB

*• Page Header Words

Group Lini Words

Over
Head
Region

28
Groups of Data

Data
Storage

Region

Fig. j. rage Orgaaxzacion o£ ine SlâôGL-IIâ

www.manaraa.com

25

Page header information contains information about who owns

the particular virtual page, which next virtual page it is

linked to, whether or not space is vacant in the page and how

much of it etc. This information is used extensively by the

Memory Controller for dynamic memory allocation and reclama­

tion.

Some_çharaçteristiçsjof_the_Memorz_S%stemjof_SYHBqL2lia

One important characteristic of the SïHBOL-IIB computer

structure is the segregation of virtual memory pages accord­

ing to their use. All virtual memory pages of SïHBOL-IIR are

used by different dedicated processors for different termi­

nals, and these are essentially used for one of three pur­

poses. The pages are used for source page lists (the list of

pages used for source string only), object page lists (the

list of pages used for object string only) or for name-table

and data page lists (the list of pages containing the name-

table and data).

Another important characteristic of the STHBOL-IIB com­

puter structure is the principle of "no-sharing" of informa­

tion by different terminals, that is each terminal is the

sole and exclusive owner of its three page lists once it

aquires them from the system, until it releases them to the

system to be used for some other purposes. However, a termi­

nal needs the service of various dedicated processors for the

completion of its job. Hence, even though no sharing of in-

www.manaraa.com

26

formation between terminals is allowed the processors share

information belonging to a terminal. These philosophies have

very profound effects on the techniques of buffer space allo­

cation as mentioned later.

Since we are mostly concerned with SYMBOL-IIR like com­

puting structures, we do not intend to answer, here, ques­

tions like why sharing of information between terminals was

not allowed in the system. We just consider systems which

have similar major characteristic philosophies as that of

STMBOL-IIR.

Introduction to STHBOL-UR like Computing Structures

SÏHBOL-IIB like computing structures could be

characterized as computing structures having similar major

architectural philosophies as that of the SYMBOL-IIR comput­

er, and as far as the problem of applicability of buffered

main memory to STHBOL-IIR like computing structures is con­

cerned, they could be viewed as in Fig. 4.

The virtual memory system of a computing structure like

SYMBOL-IIR could be characterized as a paged memory system

consisting of two levels of memory—the first level

consisting of relatively fast core of H number of pages and

the second level consisting of a drum or disc of N number of

pages (Fig. 4). Let us call the core cycle time of the first

level or main core memory as Tmcyc and the auxiliary store

access time as Taux. For SYMBOL-IIR like computing struc-

www.manaraa.com

27

Auxiliary Memory

Or

Backing Store

(Taux)

Taux Tmcyc
M Pages

Virtual Memory

2 Level

Main Memory
P Pages
(Tmcyc)

Tmcyc x Tpcyc

Another
Dedicated

Processor

(Memory Controller)

Dedicated

Processors

pcyc

n Terminals

Fig. 4. SÏHBOL-IIR like Computing Structures (2 level)

www.manaraa.com

28

tures Tncjc is in the range of microseconds and Taux is in

the range of milliseconds. So, Taux is about 1000—5000

times that of Tmcyc, that is there is a speed disparity of

about 1000—5000 between the first level and the second

level.

Let all the processors of SïMBOL-IIR like computing

structures have the same processor cycle time and let this be

denoted by Tpcyc. For a SYHBOL-IIR like computing structure,

there is a speed discrepancy of about 10 between the proces­

sor cycle time (Tpcyc) and the main storage cycle time that

is Tpcyc = 10 Tmcyc.

Need for buffering

In SYHBOL-IIB like computing structures the main fast

memory serves as a buffer for the relatively slow auxiliary

memory. However, as noted before, there is a wide speed dis­

crepancy between the two memory speeds, and also there is a

big speed disparity between the basic processor cycle time

and the main memory cycle time. Even though the virtual mem­

ory system tends to give an illusion of infinite transparent

main storage to different users, there is a big difference in

the effective speeds between the hits (i.e. the time when the

required page is in the main memory) and the misses (i.e. the

times when the required page is not in the main memory and

has to be brought from auxiliary memory) This might involve

a transfer of a page from core to auxiliary memory first be­

www.manaraa.com

29

fore the required page is brought from the auxiliary memory

to main memory. This speed gap between the two levels of the

memories and between the processors and the main memory of

SÏM60L-1IB like computing structures make the speed of the

whole computer system inherently bounded by the speed of the

memory.

For STHBOL'IIB like computing structures the ideal case

would be to have one large storage unit with cycle time

(Tmcyc) equal to Tpcyc. The processors can then issue stor­

age requests on any and every processor cycle. However, be­

cause of the cost/speed trade-off considerations it is not

physically feasible to provide a storage system in

commensurate with the processor cycle time. The ideal solu­

tion of achieving greater speed with minimum cost is to pro­

vide buffering by using two memories—one called the buffer

or cache, being small, cheap and fast enough to match the

speed of the processor and situated physically very close to

the processors for quick accessibility and the other

relatively cheap, and slow main memory but able to transfer a

large amount of data into the small buffer main memory in a

single cycle.

Hence, the buffered virtual memory system of STHBOL-llB

like computing structures could be thought of as a three

level memory system—the first level being the very fast,

small capacity buffer, the second level being relatively

www.manaraa.com

30

slow, medium capacity main memory, and the third level being

the slowest, very large capacity backing store (Fig. 5) .

Main Memory Organization of SYMBOL-IIE

like Computing Structures

As mentioned before, one of the important philosophies

of S7HB0L-IIB like computing structure virtual memory system

is the segregation of virtual memory pages according to their

use. also each virtual page sort of consists of two parts—

data groups and data group linking words. One of the reasons

for providing group linking words and page header words along

with data groups in the same page is the simplicity of the

address translation scheme.

However, there is no reason why main memory could not be

segregated into different modules. Hence, trying to retain

the same basic concepts of STHBOL-Ilfi and at the same time

partitioning the main memory, let us organize the main memory

of SÏMBOL-IIB like computing structures as follows:

The main memory is thought of as partitioned into three

separate major modules—calleù data module, data linking

module, and system and terminal header module respectively.

The System and terminal header module could contain es­

sentially the system and terminal header information like the

first 4 pages of the STHBOL-UB computer, since these pages

have to be resident in core most of the time, segregating

them in a separate module helps to access them in parallel

www.manaraa.com

31

Virtual Memory

3 Levels

Another Dedicated Processor

(Memoiry Controller)

Auxiliary Memory

Or
Backing Store

(Taux)
Taux ̂ Tmcyc

M Pages

Main Memory
P Pages
(Tmcyc)

Tmcyc ̂ Tpcyc

Tbuff Tpcyc
B Blocks
Tbuff

p Dedicated Processors

(Tpcyc) ^

Pig. 5. SÏHBOL-IIR like Computing Structures (3 level)

www.manaraa.com

32

with other information. Also, since it would not be too big,

it could be designed as a separate fast memory modale.

The data linking module will be the module containing

the page header words and data group link words of all the

virtual pages of the system. The main reason for this

segregation is to achieve simultaneously almost all the im­

portant information needed by different processors and to

achieve more parallelism. It is thought that segregating

these data into different modules and providing the capabili­

ty of accessing all the data at the same time can reduce the

overall computation tisse and minimize the number of accesses

to each module.

Data module (s) will be module (s) containing only data.

Hence in essence the whole main memory system of STHBOL-IIR

like computing structures would look as that in (Fig. 6).

Buffer Management and Organization of STMBOL-IIB

like Computing Structures

If a buffer is to be provided for SYHBOL-IIR like com­

puting structures, an important question one has to answer is

how the buffer should be organized and managed.

An efficient scheme of implementing a buffered memory

system for SYMBOl-IIH like computing structures involves ef­

ficient design of the following strategies:

1. Buffer space allocation strategies

2. Buffer space loading or placement strategies

www.manaraa.com

Auxiliary Memory

Or

Backing Store

(M Pages)

(N.P.G.W)
Words

(P.PiW.)
Words

Page Header and
Data Linking Memory

W Words/Group
G Groups of (Page
Header and Data
Linking) / Pagt

P Pages/Module
N No. of Modules

N Main Memory Data Modules
(Data Memory)

W Words/Group
P' Data Groups/Page
P Pages/Module

(System and
Terminal Header

Memory)

f Data
' Linking Buffer

Data Buffer

Fig. 6. Virtual Memory Organization of SYMBOL-IIR like Computing Structures

www.manaraa.com

34

3. Buffer space replacement strategies and

4. Buffer address translation strategies.

The design of these four strategies should be approached

with the goal in mind that the buffer should be cheap, small,

fast, and flexible enough, and yet should maximize the suc­

cess references to the buffer.

If technology of today could provide an inexpensive,

large, and fast memory (serving as a buffer) then the whole

problem of worrying about designing these efficient strate­

gies would not be that important.

Basis for buffer space allocation

In trying to design an efficient space allocation strat­

egy for SYHBOl-Iia like computing structures, one should give

some thoughts to the following guestions:

1. How the buffer space should be allocated on size

and associativity considerations,

2. Whether it should be allocated on a physical or

functional basis,

3. Whether it should be organized as a homogeneous

unit or it should be organized as heterogeneous units, and

4. How should it be partitioned? Should it be divid­

ed into a fixed or variable number of classes? and, if so,

how the partitioning of buffer space should be done for dif­

ferent classes, that is should all classes have equal buffer

space or should the amount of buffer space allotted to a

www.manaraa.com

35

class vary depending upon its need.

Let us discuss these problems in some detail.

Size and associativity consi derations

Based on the size and associativity considerations one

might approach to allocate buffer space for SÏBB0L-1IB like

computing structures in any of the following three ways:

1. Fixed page size, variable associativity

2. Fixed or variable number of blocks, fixed

associativity and

3. Fixed number of blocks, variable associativity.

Fixed page size, variable associativity Taking the

approach as is used in conventional computers, one approach

might be to organize the buffer space as consisting of a

fixed number of pages, the page size being fixed and same as

the page size of the backing store. The buffer would appear

now as an anonymous pool of page frames, where each page

frame of it could be associated with any virtual page of the

backing store (variable associativity) (Fig. 7). However, as

the information would be transferred between main memory and

the buffer in blocks instead of a page (a block being some

fraction of a page), this approach will need some sort of

validity bits to be associated with different blocks of the

page. This approach works fine for conventional machines and

has been implemented in various machines (24). However, for

SYMBOl-IIE like computing structures this approach does not

www.manaraa.com

Buffer Virtual
Memory Memory

(Fixed or variable
no. of pages)

Buffer page size = Virtual
page size

(Page associativity varies
dynamically)

Buffer
Memory

(Fixed or variable
no. of blocks)

Virtual
Memory

(The associativity of a block
with respect to a virtual page

is fixed and does not vary
dynamically)

Buffer
Memory

(Fixed no. of
blocks)

Virtual
Memory

u>
ch

(The associativity of a block
with respect to a page

varies dynamically)

Approach I Approach II Approach III

Fig. 7. Three Approaches for Size and Associativity Considerations

www.manaraa.com

37

seem to be too exciting, because in STHBOL-IIB like time­

sharing computer structures, virtual pages are segregated ac­

cording to their usage and each terminal needs 3 page lists

for the execution of its job. Also, terminals are not al­

lowed to share each others information; and since buffering

has to be provided for the system operating in a time-sharing

environment, the need for providing sufficient buffer space

to obtain a better hit-ratio might result in the need for a

buffer of quite large size (larger than the present core of

SYHBOL-IIB) thus making it quite expensive.

Eixed.o&_varia&ie_blgGks_sizei_fixed_assosia&ivit%

Because terminals are not allowed to share each other's in­

formation the approach of fixed pages and fixed sizes with

variable associativity loses much of its charm. Hence an­

other approach might be that of buffering a fixed or variable

number of blocks per page with fixed associativity (Fig. 7)

i.e., associate these particular blocks with the particular

virtual pages only. Here the idea is to allocate a certain

amount of buffer space for each virtual page (unlike the

whole page as in the previous approach). The total buffer

space now would consist of m * H blocks, where virtual memory

size is N pages (each page being of the size of Q blocks) and

m is an integer with a/Q << 1. How the associativity of each

block is fixed or static with a virtual page and does not

vary with time. If m is equal to 1 then it results in the

www.manaraa.com

38

simplest type of buffer organization, there being no need for

the priority update list or chronology (41). Any time a par­

ticular block belonging to a certain virtual page is not

found in the buffer, then the corresponding block of that

virtual page is replaced by the new required block* There is

no problem of deciding which block is to be replaced. Howev­

er, if m > 1 then there has to be a priority list associated

with the blocks of each virtual page. In casa of a miss, the

block having the lowest priority amongst all might be re­

placed.

Even though this approach seems conceptually simple,

buffer size tends to be proportional to virtual memory size.

Increasing the size of virtual memory would result in an in­

crease of buffer size (Fig. 8).

Fixed number of blocks, variable associativity An­

other approach which would tend to reduce the problem of buf­

fer size being proportional to virtual memory size is to

design the buffer to be of fixed size, consisting of a fixed

number of blocks, where the associativity of a particular

block with a virtual page is varied dynamically. How each

virtual page does not have a fixed amount of buffer space for

it, but there is a fixed amount of buffer space for a vari­

able number of virtual pages. Hence, based on size and

associativity considerations, this approach of small and

fixed buffer size (and hence economical) with dynamic block

www.manaraa.com

39

/ •
/

Approach I

/

/

/
/

/

/
/
/ •

/
/
/

/
/
/

/
/ Approach II

/

/
/

/
/
/

/
/

,/ Approach III

- - * - — — — - - — — - - — — — — — — — — — — — — — - — -

Virtual Memory Size

8. Variation o£ Buffer Size with Virtual Memory

www.manaraa.com

40

associativity seems to be the right approach for SYMBOL-IIE

like computing structures (Fig. 8).

Physical and functional considerations

STHBOL-IIB like computing structures consist of a

network of multidedicated or non-homogeneous or special pur­

pose processors. The whole system is organizad as a network

of master-slave processors, and each processor is

indispensable to the system. A terminal needs the service of

these dedicated processors, for various amounts of time, for

the execution of its job. Hence, after deciding the size and

associativity considerations, another parameter which seems

to be very important is to decide how the partitioning of

buffer space should be done, that is should buffer space be

provided physically for different existing physical proces­

sors or should buffer space be provided for existing termi­

nals or should the buffer space be just provided for the

whole system.

Since a dedicated processor performs a dedicated func­

tion (that of either storing input programs, or translation,

or execution, or system supervision, etc.), the assignment of

buffer space to different processors in a dedicated proces­

sors environment indirectly segregates buffer space

functionally and buffer space is automatically partitioned

into a number of different homogeneous units.

www.manaraa.com

41

However, if buffer space is allotted physically to

either different terminals or for the whole system, it takes

a different perspective. Now the buffer space is not

segregated into different homogeneous units automatically,

and if further partitioning of buffer space is to be done it

could be done on a functional basis.

The idea of partitioning buffer space functionally is to

treat the whole buffer space either as a homogeneous unit or

a heterogeneous unit. The analogous approach of partitioning

buffer space functionally in a conventional computer system

might be that of segregating buffer space into "instruction

buffer space" and "data buffer space". However, for SYMBOl-

IIB like computing structures, the approach might be that of

of partitioning buffer space into three parts—one part for

source string (source buffer space), one for object string

(object buffer space), and one for name-table and data (name-

table buffer space). The reasoning behind this kind of

partitioning is based on the fact that almost all the virtual

pages of STflfiOL-IlB like computer structures are used for one

of those three purposes.

Another approach of partitioning buffer space

functionally is to have one to one correspondence between the

buffer space and the main memory. Hence the whole buffer

space might be thought of as partitioned into three parts—

system and terminal header buffer, data group linking buffer

www.manaraa.com

H2

and data buffer respectively.

The idea of providing buffer is to simply provide fre­

quently accessed data at a faster rate to the processors.

Hence, data which are accessed infrequently (and data which

could be accessed at a faster rate) need no buffering. Group

link words are generally accessed only once for the whole

group. Hence the access frequency of group link words is

1/w, where w is the number of words in the group. Hence as w

decreases, the frequency of group link word accesses in­

creases, and as w increases, the frequency of accessing group

link word decreases. The justification for providing a buf­

fer for data or group linking words is valid only after

taking extensive traces for frequency of accesses to group

link words. If the provision of a data link buffer does not

improve the performance significantly (as far as the hit-

ratio is concerned) and if it is relatively expensive then

apparently there is not much justification in providing a

buffer data link. Hore about this is discussed in chapter

IV. Taking this approach the whole buffered virtual memory

system of SYHBOL-IIR like computing structures would look as

in (Fig. 9).

Fixed or variable partitioning

Another factor which is very important for efficient

buffer management strategy is to decide how the buffer space

should be partitioned among processors or the terminals or

www.manaraa.com

I I

] CZ3 S s s s s 3

p Processors

p Classes

(p is fixed for a system)

1. Priority Update List
2. Bv.ffer Directory
3. Buffer Segment

n Terminals

n Classes

(n is fixed for a system)

s Classes

(s = 2^ where i = 1, 2....)

Fig. 9. Buffer Partitioning Strategies

www.manaraa.com

44

for the whole system.

The overall hit-ratio obtained in a buffered virtual

memory system partitioned among different classes is the com­

bination of hit-ratios for each class. Hence, the principle

behind partitioning of buffer space among various classes is

to obtain maximum hit-ratio for the most frequently

referenced class. The problem of deciding whether to parti­

tion buffer space equally among all the classes or not

depends upon the frequency of reference of each class. As

long as all the terminals of the system are given equal pri­

ority for system usage, nothing can be said about the load on

the system by different terminals, and hence one easy ap­

proach of partitioning buffer space for terminals would be to

partition the buffer space equally among all the terminals.

Though the same approach of fixed partitioning of buffer

space might be used for the dedicated processors, the follow­

ing factor should be kept in mind.

The idea of achieving multiprocessing by the use of

multidedicated processors in a time-sharing environment is

the efficient utilization of hardware resources and faster

response time (36,37,38). One of the major presumptions

behind this concept is that, in a full operational time­

sharing environment, all of the processors would be fairly

busy. However, as far as the processing of a job by differ­

ent dedicated processors is concerned the duration of use or

www.manaraa.com

45

the service time of each dedicated processor is not the same,

that is all the processors are not needed for the same amount

of time. The amount of service required of a dedicated proc­

essor is highly program dependent. Also, the type of ad­

dresses referenced by these dedicated processors vary. Some

of these processors generate a sequential address reference,

and some scatter their address referencees non-sequentially.

Hence, the amount of processor service time along with its

type of address reference should be another major factor in

deciding whether the buffer space should be partitioned

equally among all the dedicated processors or not. If the

frequency of reference of different dedicated processors is

about the same then equal partitioning of buffer space would

seem to be the right approach. Otherwise, for obtaining

better hit-ratio, the processor with the maximum (minimum)

frequency of reference should have the largest (smallest)

portion of the buffer space. Hence, the addressing pattern

of different dedicated processors, their frequency of usage,

and the amount of their service time should be some of the

major factors in the decision of equal or unequal and fixed

or variable partitioning of buffer space amongst different

processors.

Buffer address translation strategies

Another factor which is also of some importance in the

design of a buffered virtual memory system is the efficient

www.manaraa.com

46

design of "address translation strategies".

The most important goals of an efficient address trans­

lation scheme are that it

1. Should try to reduce the delay associated with ad­

dress transformation with minimum cost and

2. Should be as simple as possible.

A virtual memory system tends to give the illusion of an

infinite physical storage space to the users even though the

physical storage space is limited. Hence, there has to be an

address translation strategy for mapping the virtual space

into physical space. In a simple paged virtual memory system

this is accomplished by the provision of an associative mems-

ry, which serves as a dynamic map table and keeps track of

the association of a physical page to a virtual page. Every

reference to memory is now accompanied by an address trans­

formation, to locate its physical location.

In a buffered virtual memory system, buffering adds an­

other level to the levels of memories. Thus there has to be

another map for mapping buffer locations into physical loca­

tions. Hence intuitively it seems that, in a buffered

virtual memory system, every memory reference would involve

two address transformations--one from the virtual space to

main memory space and the other one from main memory space to

the buffer space. However the control can be so designed

that two address transformations are needed only when an

www.manaraa.com

47

auxiliary to main or main to cache transfer is performed and

not when the data is already in the cache. The extra price

one has to pay for saving one extra transformation is in the

increase in size of the buffer directory. The buffer

directory no* has to have information regarding the associa­

tion of buffer location with the main memory as well as the

auxiliary memory.

For SYMBOL-IIB like computing structures without the

buffered memory, the address translation could be done as

shown in Fig. 10.

However with buffering, the address translation is not

so simple.

In STHBOL-IXS like computing structures, with any memory

request, we have the following information:

1. The virtual address which involves

a). The virtual page address

b) • The group address and

c). The word address.

2. The processor which is requesting

3. The terminal number for which the processor is

working and

4. The page list number (the purpose for which the

request is being made).

Based on this information, mapping techniques for

buffered virtual memory system of SYHBOL-IIR like computing

www.manaraa.com

48

Virtual Address

Virtual Page Address

Group

Address

Word
Addr.*

Associative Memory

(32 Words)

•_ Core Page -*
Address

Co

Group —*
Address

re Address —

f Word 4
Addr.

»

Fig. 10. Address Translation of SYHBOL-Iia

www.manaraa.com

49

structures could be divided into three cases depending on how

the buffer space is going to be partitioned, that is whether

it is going to be divided into various classes on terminal

number basis, or processors basis or on the whole system

basis. Each of these three cases could be further divided

into two schemes based on whether each reference to memory

has to involve one or two address transformations.

These three cases are illustrated in Fig. 11 to Pig. 14.

When the whole buffer space is allotted to the system

and if it is to be partitioned into several classes, logical­

ly adjacent pages are thought to reside in contiguous

classes. Hence for this case, the lower order bits of a

virtual page represent a class Dumber. But when the buffer

space is to be partitioned among various terminals it takes a

different perspective.

In SYMBOL-IIR like computing structures, any terminal

could be owner of several logically or physically contiguous

pages, hence representing the class number by the lower order

bits of the virtual page address might result in the pages of

one terminal belonging to two different classes. In this

case the terminal number itself (rather than the lower order

bits of virtual page address) represent the class number, and

it is used as the key for searching the buffer directory.

The same approach could be used also for the processors.

However partitioning of buffer space into classes based on

www.manaraa.com

Data Buffer

(N'.Z.W) Words

Data
Linking Buffer

I 1

Z Blocks Z Words

(N'.Z) Words

N' = No. of Terminals

Z = No. of Data blocks/Terminal

W = No, of Words/Block

Main Bus

1 J

] I Virtual Page Address (p bits') I Group Add. Iword Add J
Page list Processor

No No

Terminal No
t bits L_

Buffer block location

Buffer word location

Buffer Directory

Main Assoc. Memory

Pig. 11. Address Translation of STHBOL-XIE like Computing Structures

www.manaraa.com

Main Bus

Ers I E
J 1 Virtual Page Address (p bits) 1 Group Add. Iword Addl

Page list Processor
No, No.

I Terminal
I No. t bits

!

t —

JLI

Buffer Directory

J

Main Assoc. Memor-"

Buffer block location

Buffer word location J"

1
i- .t

— — J

Fig. 12o Address Translation of STHBOL-IIB like Computing Structures

www.manaraa.com

Data Buffer

(N".Z'.W) Words

Data
Linking Buffei

(N".Z*)
Words

N" = No. of Processors for buffer

Z' = No. of Blocks/Processor
I

W = No. of Words/Block]

Main Bus

Z' Blocks Z' Words

nz]
Page list

No.
Terminal No.

I 3
Virtual Page Address (p bits) |Group Add.|Word Ad4

I Encoder •

Processor No.%

Main Assoc. Memory

*

t

.1

T ±

Buffer block location

Buffer word location

Buffer Directory 3=
I

ui
to

Fig. 13. Address Translation of SYMBOL-IIS like Computing Structures

www.manaraa.com

Main Bus

Page lisi: Terminal No
No.

I

Bufi.'er block location

Buffer word location

Buffer Directory

Main Assoc. Memory

Virtual Page Address (p bits) Group Add Word Add

Fig. 14. Address Translation of SÏMBQL-IIR like Computing Structures

www.manaraa.com

54

processors does not truly partition buffer space among vari­

ous classes, because they share each others information. But

as far as the searching of the buffer directory is concerned

the processor number along vith the virtual address could be

used as a key to search the whole directory.

When the whole buffer space is allotted to the system,

and if the partitioning of the buffer into various classes is

desired, one easy approach might be of allotting equal buffer

space for each class.

In the schemes where one address transformation is

saved, the buffer directory (instead of the main associative

memory) is searched first. And if the required block is not

found in the buffer, the virtual page address is used as a

key to search main memory to see if the required page is in

the main memory or not. Hence now the buffer directory has

to have the association of buffer location with both the main

memory and the auxiliary memory. This results in the bigger

size of the buffer directory. Hence, there has to be an ad­

dress translation strategy for mapping the virtual space into

physical space.

Buffer space replacement considerations

One of the very important parameters which affects the

overall effective design of the buffered memory for SYMBOL­

IZE like computing structures is the design of the buffer

space replacement strategies. Even though the problem of

www.manaraa.com

55

"thrashing" is not so severe in buffered memory (because of

speed difference of about 10 and not 100 or more between main

memory and buffer (12,13), the whole idea of improving the

performance by the use of a buffer memory would lose its im­

portance if, because of a bad space replacement strategy, a

very poor hit-ratio were obtained. Hence, while designing in

efficient buffer space replacement strategy the following tvo

factors should be kept in mind:

1. The algorithm should try to maximize the "block

residency time" in the buffer, that is the number of distinct

blocks encountered between two successive block swaps should

not be more than the buffer capacity. This principle also

would tend to increase the "activity" of the buffer (42,43)

and

2. The algorithm should tend to replace a block from

the buffer whose probability of reference in near future is

minimum. This also will measure indirectly the "buffer

inactivity time" (42,43).

Even though the buffer replacement strategy has not been

found to be of much importance in conventional machines, it

seems to be important for a computing structure like S79B0L-

IIR.

It is as important as the buffer space allocation strat­

egy, for the same reason: the buffer has to be as small as

possible for cost considerations and at the same time it

www.manaraa.com

56

should tend to achieve very high hit-ratio.

The design of the buffer space replacement strategy con­

sists of designing of following two factors:

1. Designing of "replacement policies", and

2. Designing of "replacement mechanisms".

Replacement policies are the policies for deciding how

the replacement is to be handled, that is whether a "local

policy" or a "global policy" should be used, and mechanisms

are the means of implementing a particular rule or scheme.

The rules might be one of the followings:

1. FIFO (first in first out)

2. LIFO (last in first out)

3. FINOFO (first in not used first out)

4. LINUFO (last in not used first out)

5. LEO (least recently used)

6. MRO (most recently used)

7. LFO (least frequently used)

8. MFO (most freguently used)

9. Biased Replacement Rules etc. (6,7).

The local replacement policy is the policy in which a

processor/terminal replaces data from its own subset of buf­

fer memory space to make room for newly demanded data.

Whereas, a global policy is the one in which a terminal or

processor can replace any other's data. One important aspect

which has to be kept in mind though is that, for STHfiOL-IIR

www.manaraa.com

57

like computing structures there is "no-sharing" of informa­

tion between different terminals. However, different

dedicated processors share each other's information.

Allotting fixed and unequal amount of buffer space for either

terminals or processors tends to divide buffer space into a

fixed number of classes. As far as partitioning of buffer

space into various classes for terminals is concerned it is

all right, because they do not share each other's informa­

tion. However as far as the partitioning of buffer space for

various processors is concerned, it creates a problem. Be­

cause processors have to share each other's information,

there has to be a provision for allowing the processors to

share each other's buffer. Hence, the technique for allocat­

ing and replacing buffer space for processors is as follows:

1. When certain demanded information by some proces­

sor is not in its own buffer, then all the buffer directory

should be searched in order to find the possibility that it

might belong to some other processor's buffer space. If it

is found in any other processor's buffer directory, then the

required data should be fetched from that processor's buffer

space.

2. However, if the required information is not found

in the whole buffer, then a certain block has to be replaced

from the buffer. At this point, a "local" or "global" policy

could be used. As far as the processors are concerned, a

www.manaraa.com

58

local policy seems to be better than the global, because, in

using a global policy a processor might replace a block (be­

longing to some other processor's buffer) which could seem to

be of least importance to it at that point, whereas it could

be quite important to the processor from whose buffer space

the block is being replaced.

Hence, as far as processors are concerned, the principle

of "global searching with local replacing" seems to yield

better results intuitively.

However, as far as terminals are concerned, the picture

looks quite different.

1. Hhen information is needed by a certain terminal,

then the directory of that terminal only is searched. If it

is not found in that class, then a particular block has to be

replaced.

2. How the principle of either "local" or "global"

replacement strategy could be used. Since the terminals do

not share each other's information the "local" policy seems

to yield better results than the "global" one. Hence, as fir

as terminals are concerned the principle of "local searching

with local replacing" should be used.

As far as partitioning of buffer space into different

terminals or processors is concerned the buffer space

replacement strategy could be investigated a little further.

www.manaraa.com

59

The buffer space for a terminal could be pictured as a

collection of three hoiogeneous sub-units. These three sub-

units are the buffer for source, object and name-table and

data. Hence, the "local" replacement policy, for a terminal,

could be further divided into tvo sub-policies as follows:

1. Sub-local policy or

2. Sub-global policy.

Sub-local policy is the policy of replacing a particular

block, belonging to the same sub-class as the demanded block

i.e., source, object or name-table and data list, from its

own assigned buffer space only. Sub-global policy is the

policy of replacing any block belonging to its own assigned

buffer space for a new demanded block. So, for the sub-local

policy, a demand for a block belonging to the source list

could only replace a block belonging to the source list only

from the buffer, whereas in the sub-global policy, a demand

for a block belonging to say source list could replace a

block belonging to other lists.

is far as the partitioning of buffer space for the proc­

essors is concerned it might appear to be a collection of

different homogeneous units. However, because the processors

share each others information, the buffer of certain proces­

sors might result in as heterogeneous units. So the similar

principle of sub-local and sub-global replacement policy can

be applied to the processors also.

www.manaraa.com

60

On the whole, the partitioning of buffer space in

SYNBOl-IIB like computing structures can be pictured as in

Pig. 15.

Comments on Buffered System Organization

Before carrying out any simulation analysis of a system,

it has to be modelled. And to model a system various impor­

tant parameters have to be decided. This chapter serves as a

basis for models of buffered memory systems of SIHBOL-IIB

like computing structures and analyses various important pa­

rameters which can influence tremendously the simulation.

This provides an insight into the design of buffered memory

systems of SYMBOL-IIR like computing structures, and based on

these factors the simulation experiment is carried out and is

discussed in the next chapter. Also one of the main purposes

of this chapter was to study the effect of architectural or­

ganization and its philosophies on the design and management

of its buffered memory systems.

www.manaraa.com

Buffer Space

f
f

Homogeneous

i

System

1

Private
or

Local

Heterogeneous
or

Dedicated
*_

Public
or

Global

Private
or

Local
t^

f
Sub-local

Public
or

Global

Terminals

t
Heterogeneous

or
Dedicated

Private
or

Local
t

Public
or

Global

1

i
Homogeneous

_J

Processors
J-

1
Heterogeneous

or
Dedicated

r"
Private
or

Local

r

f
Sub-global Sub-local Sub-global

Public Private
or or
Global Local

1
Public

or
Global

Sub-local Sub-global

Fig. 15. Buffer Space Allocation for SYMBOL-IIH like Computing Structures

www.manaraa.com

62

CHAPTER 17. EXPESIHMTAL ANALYSIS AND RESULTS

Introduction

The planning of the experiment for determining the per­

formance of buffered memory systems for SYHBOL-IIR like com­

puting structures essentially consists of three things:

1. The selection of the "controlling" or "experimen­

tal" factors.

2. The design of the experiment itself and

3. The determination of the factors to be analyzed and

their figures of merit (42,43).

Controlling Factors

Controlling factors are the factors which can be con­

trolled by the experimenter for controlling the process under

investigation. These are essentially the factors which con­

trol the results of the performance analysis and based on

which a feeling of the performance of the system is obtained.

For a particular experiment the number of these controlling

factors could be quite large. However as the investigation

of a process is very much limited by time and economic con­

siderations one must try to select only the factors which

seem to be potentially most important for the particular ex­

periment. For analyzing the performance of buffered memory

systems for SYHBOL-IIR like computing structures the control­

ling factors which are chosen for investigation are:

www.manaraa.com

63

1. The users environments

2. The buffer partitioning algorithms

2. The replacement algorithms and

4. The buffer and block sizes.

As ve can see each of these controlling factors can be

varied. For these various controlling factors the various

alternatives that are considered are as follows:

Osers environments

One of the important parameters which determines the

comparative suitability of one hierarchical system over an­

other is the nature of users environments. One of the impor­

tant questions that has to be answered for determining the

applicability of a buffered memory system is how does the ef­

fectiveness of the cache vary from one program to another,

that is from one users environment to another. Hence to

evaluate the performance of buffered memory systems, one

phase of the task is to test performance in several types of

users environments, and the second phase of the task which is

perhaps more difficult is to identify the worse conditions

where cache design may be a poor choice.

This factor can be divided into three categories:

1. Scientific environments

2. Commercial environments or

3. General purpose environments.

To reduce the amount of computation time and because it was a

www.manaraa.com

64

feasibility investigation of buffering SYMBOL-IIR like com­

puting structures, the investigation vas restricted to only

small scientific users environments.

This factor is divided into three further subdivisions

for the purpose of the investigation:

1. Buffer partitioned for processors

2. Buffer partitioned for terminals and

3. Buffer partitioned for system.

Replacement algorithms

1. Least recently used (LBO)

2. Most recently used (MBU)

3. First In first out (FIFO)

4. Last In first out (LIFO)

5. Least frequently used (LFO)

6. Host frequently used (MFD)

Each of these replacement algorithms were further divided

into two subfactors—private (local) or public (global), de­

pending on where they were applicable.

Buffer and block sizes

This factor can be varied over a vide range of values,

however for our experimental purposes the block size vas

fixed to be 8 vords and the buffer size vas varied from 16 to

512 vords.

www.manaraa.com

65

Design of the Experiment

One of the factors strongly affecting the performance of

a buffered memory system for S7flB0L-IIB like computing struc­

tures is the nature of the trace of memory addresses of both

the instructions and the data or operands, referenced by var­

ious processors for the various terminals. One of the most

common «ays for evaluating the performance is by a simulation

technique. The main idea behind simulation is to generate

sequences of memory requests resembling the real environment

and to analyze them for the real environment. There are two

approaches for carrying out this simulation:

1. Instrumentation technique and

2. Synthetic technique.

Instrumentation techniques are the techniques for gener­

ating sequences of memory requests with the help of instru­

ments when various test programs are really running in the

system. The dynamic traces of the addresses are recorded by

various instruments. Instrumentation techniques have been

very popular because it is possible to record a dynamic ad­

dress sequence of various processors with sufficient accura­

cy, that is memory addresses as they are generated are re­

corded. The major disadvantage of this technique however is

that this is very inflexible, and is not machine independent.

The need to evaluate a different buffered memory system with

a different kind of environment might need a minor or major

www.manaraa.com

66

modification of the previous instrumentation technique.

Synthetic techniques are the techniques for evaluating a

completely different environment from the existing one by a

study of statistical characteristics of the traces for the

present environment (1).

However, most of the studies that have been taken so far

to evaluate the performance of various conventional buffered

memory systems have used various instrumentation techniques.

The usual approach followed in these studies has been to

record memory address traces of some representative test pro­

grams and then feed them into a simulator which monitors the

loading and unloading, into and out of, cache memory in

accordance with the policies and mechanisms of the real envi­

ronment and computes the probability of either success or

failure. Hence the instrumentation technique was adapted for

collecting the data dynamically.

One of the main goals of the experiment design should be

to collect data dynamically without affecting the dynamics of

the system.

As far as the simulation analysis of the buffered system

is concerned, the following information was thought to be

enough:

1. The processor number

2. The terminal number

3. The page list number (the purpose for which a page

www.manaraa.com

67

was being used)

4. Virtual page address and

5. Group address

An interface unit vas built to record this information

dynamically. The interface unit consisted of a Fabri-Tek

core and a Kennedy tape unit. These addresses were collected

directly from the "local bus" of the Memory controller and

were stored in a Fabri-Tek Core Memory. There was also the

provision for storing the data in the tape unit. To analyze

this voluminous data there were two alternatives:

1. Collect all the data on a tape and then analyze it

with programs in the IBM System, because the SYMBOL-Iia does

not have a tape interface capability or

2. Provide some means to transfer collected data from

the Fabri-Tek core to the STHBOL-IIB disc and then analyze

it.

The SYMBOL-ZIB being available for the research purpose,

the second alternative was chosen. Besides baing able to

analyze the data at times of convenience, this also turned

out to be very economical. The programs which were chosen

for analysis usually generated about 15K to 24K addresses.

But, the Febri-Tek core used for collecting the addresses had

the capability of storing only 8K of addresses at a time.

Hence, there had to be the provision for transferring the

collected data (8K at a time) and resuming the program from

www.manaraa.com

68

the point where it «as interrupted last, conveniently without

losing any information. After all the addresses for a par­

ticular program were transferred then the simulation analysis

program was run.

Factors to be Analyzed and their Figures of Merit

For the design and management of buffered memory systems

for SYMBOl-IIE like computing structures, the following

factors are considered to be very important:

1. Hit-ratio

2. Processor utilization and its address reference

pattern

3. Processor traffic rate and

4. Block and buffer utilization.

Hitzratio

One of the most important factors for the design of

buffered memory systems is the hit-ratio. Hit-ratio is the

ratio of number of successes of memory requests to the buffer

divided by the total number of memory requests. Miss ratio

can be defined as the total number of misses divided by the

total number of memory requests. So miss ratio is equal to

(1 - hit-ratio).

Hence the figure of merit for hit-ratio is that it

should be as close to unity as possible and the miss ratio

should be as small as possible.

www.manaraa.com

69

Erocessor_utn,ization_and_its_addr&ss_referençe_

One of the other important factors to be considered foe

buffering a multidedicated processors time-sharing computing

system is the percentage utilization of each dedicated proc­

essor. The basic idea behind the purpose of achieving

multiprocessing with the help of mult idedicated processors is

the belief that under full load conditions, all the proces­

sors would be quite busy. However, since these processors

are dedicated, the amount of service needed for a particular

dedicated processor is highly program dependent. The amount

of buffer to be allotted to a particular processor is

affected by the amount of that particular processor's activi­

ty or utilization.

Besides the amount of processor utilization, the other

factor which affects significantly the amount of buffer for a

particular processor is the address reference pattern of that

particular processor. The dedicated processors of STNBOL-IIB

are designed to do dedicated tasks—and since these dedicated

tasks are quite different, the addressing pattern of these

processors are quite different too. Some of these processors

have highly sequential address reference patterns and some

have highly random address patterns.

Processor traffic rate

Another important factor to be considered is the traffic

rate for different dedicated processors. The traffic rate

www.manaraa.com

70

for each dedicated processor is defined as the ratio of the

traffic between the main memory and the dedicated buffer to

the traffic between the dedicated buffer and the dedicated

processor. It is simply the number of words transferred to

that dedicated buffer from the main memory divided by the

total number of accesses of memory requests by that particu­

lar processor. One of the main goals of buffering such a

multidedicated processor system is to minimize the traffic

between the main memory and the buffer and maximize the traf­

fic between the particular processor and its dedicated buf­

fer. A higher traffic rate would indicate that most of the

blocks which are being brought to that particular buffer are

not being used. Hence the figure of merit for traffic rate

is to be as low as possible.

Block and buffer utilization

The last but not the least important factors are the

block and buffer utilization. Block utilization is the aver­

age number of words of the particular block active between

two successive block swaps, where as the buffer utilization

is the average number of blocks of a particular buffer active

between two successive block swaps. So, the block utiliza­

tion is the number of words of a particular block referenced

at least once between two successive block swaps and the buf­

fer utilization is the number of distinct blocks of the buf­

fer referenced at least once between two successive block

www.manaraa.com

71

swaps.

Block utilization illustrates the usefulness of extra

words ia a block and buffer utilization illustrates the use­

fulness of extra blocks in the buffer.

Experimental Results

Variation of hit-ratio.with replacement algorithms

An analysis was carried out on one set of data to see

the variation of hit-ratio with different replacement algo­

rithms. Various replacement algorithms that were considered

are LEO, MRU, IPD, HJ?0, FIFO and LIFO. It is observed from

the Pig. 16 that, like conventional computer systems, hit-

ratio does not vary drastically with different buffer

replacement algorithms and LRU tends to give the best hit-

ratio. Because of this it was decided to run all subsequent

simulation analysis for LRU algorithms only.

Buffer allotted to the processors

Percentage of activity of different processors As

mentioned above, the percentage of activity of a particular

processor for the solution of a program is highly program de­

pendent. However, for small scientific programs, the activi­

ty of these different processors are almost constant.

Fig. 17 illustrates the percentage of total memory ad­

dress request of different processors, fe see that the Memo­

ry Reclamation Processor (HE), the processor which works in

the background mode and has the lowest memory priority, has

www.manaraa.com

Buffer allotted to the Processors

100

(Addresses of MR for other terminals are not ignored)

Same Buffer size for each Processor

Buffer size = 4 Blocks

0 "H 4J
2 1 •Ul
Ic

o

75 --

50 --

% --•A

LRU 71%

"FIFO

MFU

56%
—*»c:o<y

-J
ro

25

4- 4- •+• -4- 4- 4- 4- 4—I-
3 4 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

Fig. 16. Variation of Hit-fiatio with Replacament aigorithas

www.manaraa.com

Buffer allotted to the Processors

(Addresses of MR for other terminals are not ignored)
100'—

75
4J

43%
50 .. w

MR

11.6%

-A II
' TR

Virtual (Addresses or Time) in units of 1000

Fig. 17. Variation of Memory Access % of different Processors

www.manaraa.com

7 n

the maximum percentage of memory accesses. This is because

of certain design features of the system. For memory group

reclamation, the HE polls all the terminals 4 times—twice

for the page list 2 and once for page list 1 and 3 to check

to see if it has any work to do for that particular terminal.

This constitutes a substantial percentage of the total memo­

ry requests. Also ve see that this processor is active

almost from the beginning of the program to the end of execu­

tion.

The processor having the next highest memory access, at

the end of execution, is the Central Processor (CP). At the

beginning of execution the Central Processor has a very

insignificant portion of total memory requests. However, at

the end of program execution, the CP access percentage is

quite significant.

The System Supervisor (SS) constitutes about 12% of the

total memory accesses. Also, the SS is active from the be­

ginning of the program to the end of the execution.

The Translator (TB) translates the program in a fixed

amount of time and after that there is no need for the Trans­

lator for that program until the end of execution of that

program. Hence after the translation of the program is over,

the number of accesses of TB remains equal to what it was

when it just finished translating. Hence plotting the per­

centage of access of memory requests by TB in an accumulative

www.manaraa.com

75

basis results in a consistent declining curve for the TB.

The activity of the TB starts only when the program has been

loaded and a run command has been encountered.

The Input/Output Processor (IP) activity is highest

during the loading of the program. The activity also in­

creases if there are quite a few input/output statements in

the program. Looking at the activity of the IP we see that

its activity starts almost from the very beginning and then

it starts declining.

The amount of buffer allotted to a particular processor

for a reasonable hit-ratio is a function of the amount of the

activity of the particular processor. However, besides the

amount of the activity of the particular processor, another

factor which affects the hit-ratio is the address reference

pattern of the particular processor.

To investigate this, hit-ratio was computed for a large

variation of buffer sizes for all different processors.

Since the principle of global searching with local replacing

is used for the processor, the amount of buffer allotted to a

particular processor affects the hit-ratio for the other

processors.

Each processor contributes to the over all hit-ratio of

the system and the degradation in performance of hit-ratio

for any particular processor can result in over all poor per­

formance. Hence one of the basic design goals for achieving

www.manaraa.com

76

a high hit-ratio for nultidedicated buffering for a

aaltidedicated processor system is that the individual buffer

for each processor is adequate.

Memory Bed aimer fMR) Pig. 18 illustrates the varia­

tion of miss ratio of HR vit h the number of blocks over the

total execution of the program. 8e see that the miss ratio

for ME is guite high until the blocks allotted to its buffer

are more than 16 and then for 16 blocks the miss ratio

dramatically decreases to about 6.3%—yielding a hit-ratio of

93.7%. The reason for needing about 16 blocks for the HR be­

fore any increase in performance is observed is its constant

polling of 15 other terminals—vhich may or may not be active

at the time of collection of the data. Hence to investigate

the number of blocks needed for the MR for the service of the

active terminal, the addresses corresponding to other termi­

nals were ignored, ignoring these address requests ve see

that just 4 blocks for HE reduces its miss ratio to about

11%—a 3 times improvement in miss ratio (Fig. 20).

Also without stripping the addresses corresponding to

other terminals, HE had about 43% of total memory activity

(Fig. 17). But after stripping these requests the % of HE

memory access decreases to about 15% (Fig. 19), Also after

stripping these requests, an allocation of 2 blocks to the HE

buffer results in better hit-ratio than that of 12 blocks for

MR for the unstripped case (Fig. 20).

www.manaraa.com

50

2 Blocks

4 Blocks

Blocks
40

12 Blocks

30

•H

16 Blocks

24 Blocks

* + + + +

Virtual (Addresses or Time) in units of 1000

fig. 18. Variation of miss ratio tor MR

www.manaraa.com

Buffer allotted to the Processors

40

(Addresses of MR for other terminals except the active one are ignored)

Equal No. of Blocks to the Processors

o *r4 4J
2
«
CO

t
IM
o
5^

30 "r

20 ir

10

2 Blocks

0

12 Blocks

-O" tr

4 Blocks

0 0 Ô- -Ô—Ô—o—&— e — o

8 Blocks

20 Blocks
32 Blocks

-4- —e

^

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

Fig. 19. Variation of miss ratio for MR

www.manaraa.com

Buffer allotted to the Processors

(Addresses of MR for other terminals except the active one are ignored)

30

o

S 20
0]
CO

17.72%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7 0

Virtual (Addresses or Time) in units of 1000

Fig. 20. Variation of miss ratio for different Processors

www.manaraa.com

80

System Supervisor (SS) Without ignoring the requests

by MR for other terminals services, SS had about 12% of total

activity (Pig. 17). How ignoring these requests the total

activity of SS increases to 17.72% (Pig. 20).

Por SS ve see that there is no drastic improvement in

performance until the total number of blocks alloted to SS is

about 32 blocks (Pig. 21). There is a dramatic improvement

in the miss ratio for SS from 24 to 32 blocks. This is be­

cause of certain design philosophies of the system. The SS

has to go through a 'push* routine for marking the pages be­

longing to the particular terminal as inactive, when the job

is completed. This involves the scanning of an In-core-list

(ICL)—a list of pages which are in core at that time. This

essentially results in scanning of 28 different page headers.

This could result in 28 different blocks. Besides these, SS

has to have one block of data corresponding to the terminal

header and one block of data for System Queuing.

Even though the % of activity of SS is low compared to

that of MB , because of its address reference pattern, a sig­

nificant decrease in miss ratio for SS does not occur until

its buffer has 32 blocks.

Central Processor (CP) Without ignoring the address

requests of ME for other terminals, the CP constitutes 39.6%

of total memory accesses (Pig. 17). However, ignoring these

requests, the CP memory access percentage increases to 58.63%

www.manaraa.com

2 Blocks

m
CO

u

.3

2
CO

t
(w
o

3 Blocks

4 Blocks

8 Blocks

32 Blocks

O 9 o

-m—*—a
-e—B—o

^ i|^

24 Blocks

-0—9—0—0—9—0
4-

10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) In units of 1000

Fig, 21. Variation of miss ratio for SS

www.manaraa.com

82

(Fig. 20).

As far as the variation of miss ratio with different

number of blocks for the CP is concerned, we ses three big

jumps (Fig. 22).

For less than 3 blocks for the CP buffer the miss ratio

is quite high. Increasing the number of blocks to 3 results

in a significant increase in the hit-ratio. This is because

CP has now roughly one block for object string, one for name

table and one for stack or data, increasing the buffer size

to 4 blocks does not result in a very big increase in per­

formance. However increasing the buffer to 8 blocks results

in a sudden increase in performance. Afterwards not much in­

crease in performance is obtained until the buffer size

becomes 32 blocks—when it results in a hit-ratio of almost

unity (Fig. 22). This is because now the CP has almost all

the object string, name table and data in its buffer.

The amount of buffer allotted to the Central Processor

is a function of the size of the program (because the size of

object string and the size of the name table is a function of

the size of the program)—and its pattern of reference. The

scanning of the object string is almost sequential in

nature—where as the scanning of name table and stack are

not necessarily sequential.

Eight blocks for the CP buffer seem to yield quite good

hit-ratio.

www.manaraa.com

40 —

o #. 0 •

2 Blocks

@ 0 @ * -O-

5
w
(8
o
•H

Ï
CO
%

"0

o

30 --

20 — —

10 --

3 Blocks

A- Am —A—A
4 Blocks

g o

8 Blocks

—B B B—-H B ta B- -H-
A ^ jgi ^ A

12 Blocks

•0—0—Ô—d-

\W
^-*"16 Blocks

0

jA

' I

5 Ï

-0—6—d—0—0—G—0—0—Ô
—I 1 1—I—I—I 1 1-—I—

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

Fig. 22. Variation of miss ratio for CP

www.manaraa.com

64

Translator (TR) The TB scans the source string se­

quentially and generates object code almost sequentially. It

also needs to scan the the reserved word table and the name

table if necessary. The addressing pattern o£ TB hence jumps

between the source string to reserved word table to the name

table and the generation of object code. Hence for the TB

hit-ratio seems to improve with the increase with the sizes

of buffer allotted to it.

The amount of activity of the TE is quite small

(Fig. 17). However the buffer allotted to the TB is a func­

tion of the size of the program. From Fig. 23 we see that TB

yields a reasonable hit-ratio when the number of blocks

allotted to its buffer is around 16.

Input/Output Processor (IP) The IP scans the program

almost sequentially. It needs one block to keep the source

address and one block for the data.

He see that for 2 blocks the miss ratio is quite high

and as the number of blocks is increased to 4 the miss rati)

decreases quite sharply. Increasing the buffer to 8 blocks

results in slight increase in hit-ratio (Fig. 24). Hence

about 4 blocks are enough for the IP.

Hence we see that as far as the partitioning of the buf­

fer for the processors is concerned the following numbers

seem to yield a very good hit-ratio;

www.manaraa.com

40 --

2 Blocks
«h-—»-—•— —•— —® -*— * —0— • m -e-—•— e # —•— —e- 0 —# —»--#

3 Blocks
w

A— —A— A _A- A -A— -A- A A —A— -A— A n A —A— -nA— ' A -WL-

4 Blocks

8 Blocks

g o a o CB—B—SB—a—p fn—S3—CJ ea —to—lu lu
00

12 Blocks

^ O 4 ^ ^ Qi ^ ^ iQi O
16 Blocks

IC -j— c o-—o—©-"-a ® 0 o-.—o—-o—-o—o-—o—-o—-o—o——<!»-—<!>—o

20 Blocks

24 Blocks 32 Blocks

—I 1 1 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 1 1—I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

Fig. 23. Variation of miss ratio for TR

www.manaraa.com

20 ir 2 Blocks

O

15 -r

M

O

S
CO ca

>w
o

10 --
4 Blocks

8 Blocks

A

16 Blocks

24 or 32 Blocks

11 12 14 15

Virtual (Addresses or Time) in units of 1000

22 23 23.7

00
m

Fig. 24. Variation of miss ratio for IP

www.manaraa.com

87

16 blocks for HE

16 blocks for TB

8 blocks for CP and

32 blocks for SS

or a total of about 76 blocks results in a dramatic improve­

ment in performance.

Over all miss ratio

Fig. 25 illustrates the variation of over all miss ratio

with the virtual time, for different buffer sizes. As ve see

in the figure, equal buffer size is allotted to each proces­

sor except the two cases where the buffer size for MR is made

equal to the total buffer sizes for all other processors.

This figure illustrates the case where the addresses of MR

corresponding to other terminals are not ignored.

From the figure we observe that a total buffer size of

only 32 blocks—4 blocks each for SS, IP, CP and TR and 16

blocks for MR yields the best hit-catio. This seems to be

little surprising because considering the optimum buffer size

for each processor individually the total optimum buffer size

was found to be 76 blocks. Hence considering the over all

hit-ratio not much is gained by increasing the buffer size to

more than 32 blocks and 32 blocks are adequate.

Fig. 26 illustrates the variation of over all miss ratio

with the virtual time for different buffer sizes—when the

addresses of MR corresponding to other terminals except the

www.manaraa.com

40 -• —

2
CQ
t

30

20 --

10

0

Buffer allotted to the Processors

(Addresses of MR for other terminals are not ignored)
Equal No. of Blocks to the Processors except the two

O N 0 M-—S—B—• 'P • P "—®—E 2

-A-
»• -•

w e> 4

-O o- ^ 8

N—» 12

•* 4 Blocks to SS, IP, CP, and' TR & 16 Blocks to MR

^ 0 16 Blocks to SS, IP, CP, and TR & 64 Blocks to MR

—o~--0 o O"—"O O^—0 —©—€>-—O O '®"—^—6'—-O—o
^ B a -o- O « o O- -O O- O- O «•—*-40 2 0

- A — — — A . — A ' — A — l A ̂ — A A — 1 & — 2 4
^ ^ _A_ ^

A — X . — ^ A -A—-A-—A.—A'—-A—-A—A-—A——lA A—A A—iA—-jAr—â

32

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

Fig. 2 5. Variation of Over All miss ratio

www.manaraa.com

Buffer allotted to the Processors

40 —

Equal No. of Blocks to the
Processors

(Addresses of MR for other terminals except the active one
are ignored)

30

•u
2
w
CO

 ̂ 20 -i-

10

-o-

^ ^ A ét-

~P o C9 O-

a

2 Blocks

4 Blocks

8 Blocks

12 Blocks

'lA"—A A lA A lA

-X K

—
16 Blocks 24 BlocS ~®-«

^ 20 Blocks 32 Blocks

10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

00
vo

Fig. 2 6. Variation of Over All miss ratio

www.manaraa.com

90

active one are ignored. This plot also illustrates the case

when Sub-global LSO replacement policy is used.

Comparing Fig. 25 and Pig. 26 ve observe that for small­

er buffer sizes, the case with ignoring the addresses of MR

for other terminals results in better hit-ratio--however as

the buffer size is increased the unstripped case tends to

give better results.

Fig. 27 illustrates the over all miss ratio percentage

variation for various buffer sizes for processors using Sub-

local LRU replacement policy. All the processors are

allotted equal buffer space. The addresses of HE for other

terminals except the active one are now ignored. Comparing

Fig. 27 and Fig. 25 we observe that for smaller buffer sizes

sub-local policy yields a dramatic improvement in performance

over the Sub-global policy. However, as the buffer size is

increased, there is not much difference between the two and

both tend to give about the same results. This proves the

superiority of Sub-local policy over the Sub-global policy

for smaller buffer sizes when the buffer is allotted to the

processors.

Buffer allotted for the whole system

One other possibility of buffering STHBOL-IIR like com­

puting structures is to provide a buffer for the whole

system.

www.manaraa.com

Buffer allotted to the Processors

Equal No. of Blocks to the Processors

Sub-Local Replacement
40

(Addresses of MR for other terminals except the active one are Ignored)

30

o •H

(O
CO

a 20

2 Blocks

10
'4 Blocks
8 Blocks

32 ̂Blocks

Virtual (Addresses or Time) in units of 1000

Fig. 27. Variation of Over All miss ratio

www.manaraa.com

92

Nov like a conventional system, the whole buffer can be

partitioned into certain number of classes. One technique of

partitioning is on the basis of lower order bits of virtual

page address. How each class has its own directory and pri­

ority update list—and there is no sharing of information be­

tween these classes.

Based on this principle, simulation analysis was carried

out for three different cases as follows:

1. 4 classes

2. 8 classes and

3. 16 classes.

The total buffer size was fixed to 64 blocks and each

class was allotted the same amount of buffer space. From

this analysis it is seen from Fig. 28 that 4 classes with 16

blocks per class yielded the best hit-ratio and 16 classes

with 4 blocks per class yielded the worst hit-ratio. From

this figure we see that for a fixed buffer size, a small num­

ber of classes with a large number of blocks/class yields

better hit-ratio than a large number of classes with a small

number of blocks/class. However even with 4 classes and 16

blocks per class the miss ratio is quite high—17.5%.

Partioning of buffer space functionally Par titio nia g

of buffer space into various classes (like the conventional

machines) for the whole system essentially partitions the

whole buffer space into a collection of different

www.manaraa.com

o

U
00 w

'É
w
o

40

30

20 . •

10

Buffer allotted to the whole system

(No buffer for the GLW and the System & Terminal Header Words)

Buffer Size = 64 Blocks

Equal No. of Blocks for each Class

vO
w

-o 9—•9- —-® # ̂

4 Classes
O a O O tf> #—O"

0 12 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

Fig, 28. Variation of Over All miss ratio

www.manaraa.com

94

heterogeneous units. Another approach might be that of

partitioning the whole buffer space functionally—where now

the buffer might be looked upon as a collection of different

homogeneous units—one for page list 0, one for page list

1—for the source string, one for page list 2—for name table

and data and one for page list 3—for the object string.

Actually there is no such page list as 0 but, some of the

processors use page list 0 when they do not need any space.

The maximum percentage of this page list 0 addresses is used

by the System Supervisor (SS). Addresses corresponding to

page list 0 are allotted a s^arate buffer space. Based on

this a simulation analysis was carried out for different buf­

fer sizes. Fig. 29 illustrates the variation of over all

miss ratio percentage with different buffer sizes. From this

we see that a buffer of about 64 blocks yields reasonable

hit-ratio. However, even with 64 blocks the miss ratio is

quite high compared to that of 32 blocks for the buffer

allotted to the processors.

Buffer_allg#ed_tg_the_terminal

Another way of buffering STMBOL-IIB like computing

structures is to allocate certain buffer space on a strictly

job or terminal basis.

We see that on a terminal basis, the hit-ratio increases

as the buffer for the terminal increases. With 8 blocks the

miss ratio is quite high—about 33% and increasing the buffer

www.manaraa.com

t
«4-1
O

40- •

30 - -

0
3 20
S
ta
01

10--

Buffer allotted to the System

Buffer Partitioned Functionally into 4 Homogeneous Units
Equal Buffer Space allotted to each Unit

4 Blocks per Unit

16 Blocks per Unit

10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

Fig. 29, Variation of Over All miss ratio

www.manaraa.com

Buffer allotted to the terminal

40

8 Blocks

30 (No buffer for the GLW and Header Words)

16 Blocks

«4-1

4 Blocks

Ha­

lo
8 Blocks

16 Blocks

(Buffer for the GLW and Header Words)

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

\D
a\

Fig. 3 0. Variation of Over All miss ratio

www.manaraa.com

«

97

to 16 blocks results in a miss ratio of 26%.

However providing separate buffer space for the group

link word and the system and terminal header words results in

a dramatic improvement in performance with fewer blocks.

Allotting separate buffer space for the group link word and

system and terminal header words, we see that for 16 blocks

for buffer, the miss ratio is about 7.5% (Fig. 30) .

Percentage of group link words and header_words

In order to justify a separate buffer for group link

words and system and terminal header words it is necessary to

know the frequency of references for these. If the frequency

of reference is quite small, then there is no need for pro­

viding separate buffer spaces for these.

From Fig. 31 we see that group link words are accessed

roughly 1/8 of the total memory accesses. Surprisingly, the

system and terminal header words accesses constitute roughly

50% of the total memory accesses. So both of these combined

constitute roughly 2/3 of total memory accesses--which makes

one think about providing a buffer for them.

As mentioned before, there is no need to keep the system

and terminal header information in the same core. Hence the

whole header information can be put in a separate memory and

a fast buffer for the group link words (GLV) and the system

and terminal header words can be provided.

www.manaraa.com

100 --

75

S CQ
S I
I
o

5Ci --

2i»

Sys tem & Terminal Header Words

* K M vO
00

Group Link Words

g e e 6 0 o—r-o—o a o o o o— o - — q — ^ ^

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

Fig. 31. Percentage of Glw and System and Terminal header words

www.manaraa.com

99

The buffer size for the group link word for each class

will be w words if the total number of blocks for that buffer

is w. The size of the buffer for the GLW would be quite

small. However, the size of the buffer for the system and

terminal header words would vary depending upon the

partitioning scheme that is whether the buffer is allotted to

the whole system or to the terminal or to the processors.

The size of the buffer for the processors case would be quite

small—about one extra block for each processor. Allotting

one more block for TB and SS would further improve the per­

formance.

Based on this the hit-ratio was computed for various

classes for various buffer sizes and the result is shown in

Fig. 32.

From Fig. 32 we see that providing a separate buffer for

6LH and header words and partitioning the buffer into just 4

classes, a buffer of 8 blocks/class results in a miss ratio

of about 6 to 7 ̂ --without providing separate buffer for GLW

and header words had resulted in a miss ratio of about 17%

for 4 classes with 16 blocks/class (Fig. 29). Hence this

results in an improvement of about 2.5 times in the miss

ratio.

From Fig. 30 we see that providing a separate buffer for

GLH and header words, the miss ratio decreases to about 8%

for 16 blocks for the terminal—about 2 times improvement in

www.manaraa.com

40__

Buffer allotted to the whole System

(Separate Buffer for the 6LW and System & Terminal Header Words)

Buffer Size is not fixed.

Equal No. of Blocks for each Class

Buffer divided into 4 Classes only.

3C1-

o
'.-i

s
CO
CO

•g

o

20-

10

1 Block/Class

2 Blocks/Class

M

4 Blocks/Class

8 Blocks/Class

o
o

0 12 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

Fig. 32. Variation of Over all miss ratio

www.manaraa.com

Buffer allotted to the Processors

(Addresses of MR for other terminals are not ignored)

Buffer for the GLW and System & Terminal
. Header Words

10

9.1%

4 Blocks for each Processor

5

4 Blocks for SS, IP, CP & TR and 8 Blocks for MR

0.3%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23.7

Virtual (Addresses or Time) in units of 1000

Fig. 33, Variation of Over all miss ratio

www.manaraa.com

102

the performance.

From Fig. 33 we see that providing a separate buffer for

6LH and allocating extra buffer for the system and terminal

header words, for different processors, the miss ratio

dramatically improves. The improvement can be seen by com­

paring Fig. 29 and Fig. 33.

Processor traffic rate

Fig. 34 illustrates the variation of average traffic

rate for different processors with different number of blocks

allotted to their buffers. As mentioned before, the figure

of merit for the processor traffic rate is that it should be

as low as possible.

For MR, the traffic rate is quite high until its buffer

contains 16 blocks—when the traffic rate dramatically

reduces to very low value. After 16 blocks, an increase in

the number of blocks does not significantly reduce its traf­

fic rate.

For SS, the traffic rate reduces little from 1 to 4

blocks and then remains constant till its buffer has 24

blocks—after which an increase in number of blocks to 32

results in a dramatic improvement in traffic rate.

For TE, the traffic rate consistently declines with the

increase of number of blocks. From Fig. 34 we see that about

16 blocks for TR buffer yields a good traffic rate.

www.manaraa.com

MR

•H

SS

TR

00

CP

IP

24 16 20 0 12 3 4 12 8

Number of Blocks/Buffer

o
w

Pig* 34. Traffic Rate of different Processors

www.manaraa.com

104

For CPf there is a sharp decline in the traffic rate

from 2 to 3 blocks—after which the traffic rate decreases

slowly until the buffer size is increased to 8 blocks—after

which it decreases persistently.

For IP, the traffic rate decreases from 2 to 4 blocks

and then it remains almost constant.

Traffic rate as mentioned before gives an idea about the

usefulness of the blocks being transferred from the main mem­

ory to the buffer. Hence a high hit-ratio should imply a low

traffic rate and vice versa. The figures obtained for the

traffic rate are compatible with those obtained for the hit-

ratio data.

Average block utilization

Average block utilization is the average number of words

of a block referenced between two successive block swaps.

Fig. 35 illustrates the average block utilization for

different processors with the number of blocks. A good

figure of merit for average block utilization is that it

should be very high and close to unity.

For MB, the average block utilization remains low until

its buffer contains 16 blocks—when it increases and remains

constant. As low block utilization illustates the

uselessness of extra words in the block, it is observed that

about 16 blocks for the MR seem to be the optimum size—

before any reast liable size h it-ratio is obtained.

www.manaraa.com

Average Block Utilisation /

SOI

www.manaraa.com

106

The average block utilization is lowest for the SS. It

is at its maximum value when its buffer has 2 blocks after

which it decreases and remains constant till the buffer size

is 24 blocks.

For TB, the average block utilization increases

persistently with the iac Initially the average block utili­

zation is about 14% with 2 blocks and it increases to about

60% with 24 blocks.

For IP, the average block utilization increases from 2

to 8 blocks—after which it almost remains constant.

Initially for 2 blocks the average block utilization is

about 42% and it increases to about 75% for 16 blocks.

For CP, the average block utilization is lowest for 2

blocks. Increasing the buffer size to 3 blocks results in a

sharp increase in the average block utilization. It keeps on

increasing from 4 to 8 blocks—however the increase is not so

sharp. Then again a big increase is encountered from 12 to

16 blocks.

For 2 blocks the average block utilization is about

20%—and for 24 blocks the average block utilization in­

creases to about 85%.

These results are also quite compatible with the hit-

ratio data.

www.manaraa.com

Number of Blocks/Buffer

Fig. 36. Average Buffer Dtilization

www.manaraa.com

108

Average buffer utilization

Average buffer utilization is the average number of

blocks of the buffer referenced at least once between two

successive block swaps. This figure gives an idea about the

usefulness of extra blocks in the buffer.

The average buffer utilization for ME, CP, and SS in­

creases from 2 to 8 blocks and then remains almost constant

(Fig. 35).

For TE the average buffer utilization is lowest when it

has 2 blocks in the buffer—after which it increases until it

has about 16 blocks. The average block utilization remains

constant till about 20 blocks and then decreases as the num­

ber of blocks is increased.

For IP, the maximum buffer utilization is obtained for 8

blocks after which it starts declining.

From average buffer utilization point of view we see

that not much is gained from increasing the buffer sizes for

ME, CP, SS and TE to more than 12, 12, 12 and 16 blocks re­

spectively.

Conclusion

In this chapter hit-ratio data were obtained for differ­

ent buffer partitioning strategies for various buffer sizes.

From the analysis it is seen that the best way of designing

buffered memory system for SYMBOL-IIB like computing struc­

tures will be to allocate separate dedicated but sharable

www.manaraa.com

109

buffer spaces to its different nultidedicated processors.

The amount of buffer allotted to various processors is

quite small and yet it yields a very good hit-ratio. The

amount of a processor's activity and its address reference

pattern seem to affect tremendously the decision for optimum

buffer sizes for getting reasonable hit-ratio.

Partitioning the buffer spaces on the processor basis

results in a multihomogeneous buffer. Even though in comput­

ing structures like STNBOL-IIR the terminals do not share in­

formation or memory space, the processors are shared by them

and a processor can work for only one terminal at any instant

of time. Hence even though the buffers of the processors

would be dedicated, for managing this buffered memory system

the principle of global searching with local replacing should

be used.

The data were collected with programs running one at a

time, on a single terminal only. The analysis, which was

carried out for the processors, was also based on the assump­

tion that processor was serving one terminal at a time.

Partitioning buffer space into separate homogeneous

units for different processors for getting better hit-ratio

leads to one of the important system concepts. Instead of

all the processors sharing a common memory, now sufficient

memory space can be assigned to each processor. However, the

memory space assigned to these processors should be adeguate

www.manaraa.com

110

and large enough for obtaining better hit-ratio.

Obtaining a high hit-ratio is part of the solution of

the whole problem. As mentioned before, one of the major as­

sumptions of the whole thesis was that the "main memory of

SÏHBOL-IIR like computing structures is large enough so that

speed and performance is not limited by the paging traffic"

because, buffering is no solution to a virtual memory system

which is limited by the page traffic. So this presumption of

the existence of a large main memory with the capability of

transferring a block of data at a time to the buffer would

necessitate the main memory to be organized as an inter­

leaved system. So besides a high hit-ratio the other two im­

portant parameters are—a fast effective cycle time with min­

imum cost. Buffering should be tremendously cost-performance

effective—otherwise it would lose all of its charm and im­

portance. In the next chapter a cost analysis of buffered

memory systems for SYHBOL-IIH like computing structures is

carried out and it is demonstrated that buffering seems to be

the cheapest way of improving the performance.

Besides the architectural organization and the principle

of "locality", the program behaviour would also seem to have

tremendous impact upon the organization and management of

SYMBOL-IIR like computing structures. Since the interface

unit is already built, it would be interesting to see the

effect of different kinds of programs on the buffering

www.manaraa.com

111

schemes. The effect of different users enviroaments upon the

hit-ratio data is discussed farther in the chapter VI.

www.manaraa.com

112

CHAPTER ?. COST PERFOBHAHCE ANALYSIS

Introduction

"At present day commercial systems cost rather than

speed has become a dominant consideration for memory modules"

(34) .

An experimental buffered memory system for STHBOL-IIB

like computing structures might look as in Fig. 37, This in­

volves the following:

1. The buffer memory itself

2. A buffer controller

3. A directory

4. A priority update list and

5. The switching network.

The switching network is for switching information be­

tween the outgoing data bus and various memory modules.

The buffer memory controller, priority update list,

directory and switching network add extra cost. To illus­

trate this extra cost increase, the cost of a buffered memory

system using the above type of buffer is computed.

The costs assumed are fairly typical for the state of

the art technology.

The main memory is thought of organized as core modules.

The core costs are fairly typical for the present original

equipment manufacture market.

www.manaraa.com

113

Controller

Memory

Priority Up­
date List &
Directory

Buffer

Segment

Controller

Buffer

Switching

Network

Core

Fig. 37. System Buffer Block Diagram

www.manaraa.com

The buffer memory itself can be thought of as a straight

semiconductor memory (organized with relatively long words).

Cost is computed essentially for two types of address

translation schemes. Buffer cost is a function of the size

of the buffer directory and update list and directory cost is

a function of the type of address translation schemes.

The major cost of the buffer memory is the memory

itself. Directory, update list and switching network cost

are not much. The size of the directory is a function of the

address translation scheme. Even though a small variation in

the cost of buffer directory will not make much difference to

the total cost, the cost analysis is carried out for two dif­

ferent address translation schemes.

Cost Analysis

Let

Y = Total number of virtual pages

N = Number of main memory modules

M = Number of pages/module

B = Number of blocks/page

w = Number of words/block

n = Number of blocks in the buffer

f = Number of flag bits/buffer directory word

p = Number of page list bits

Bcost = Buffer cost/bit

Hcost = Main memory cost/bit

www.manaraa.com

115

Pcost = Priority update list cost/bit

Dcost = Directory cost/bit

Buffer Controller Cost = BC

then

Main Memory Capacity = {H*M*B*ir) bits

Buffer Capacity = (n * B * w) bits

As mentioned before the size of the buffer directory would

depend upon the type of the addressing scheme.

Address Scheme I:

Using this scheme buffer directory size =

n * (log 2 (M*N) + log^ N + B + f) bits

Address Scheme II:

Using this scheme buffer directory size =

n * (log 2 (H*N) • log^ N • B + f + log ̂ V) bits

Based on this a cost analysis was carried out. Buffer

cost for varions buffer sizes, for two different block sizes

and these two different address schemes were computed and are

illustrated in Table I to Table III.

From these tables we see that for buffer size of 64

blocks, and block size of 8 words, the buffer cost varies

from about 15% to 2% of the main memory cost for various mem­

ory sizes for address scheme I and it varies from about 18%

to 2.25% of the main memory costs for address scheme II.

Address scheme II does not cost much mora but saves one

memory cycle for address transformation.

www.manaraa.com

Table I. Cost Analysis

Main Memory (Core) 0,7<?/bit
Buffer (Semiconductor) 4<:/bit
Buffer Directory lOf/bit
Priority Update List 10*/bit

Mai.n Memory Buffer Size = 64 Blocks

Capacity Cost
Block Size = 8 Words Block Size = 4 Words Capacity Cost

Fraction
of Main

Cost
Fraction

of Main
Cost % of

Main

32K Words

256K^Bytes $14,680
1/64

Scheme I $2484 14.7

1/128

Scheme I $930 6.35 32K Words

256K^Bytes $14,680
1/64

Scheme II $2585 17.6

1/128

Scheme II $1032 7.05

64K Wards

256K Bytes

$29,360 1/128
Scheme I $2490 8.5

1/256
Scheme I $937 3.2 64K Wards

256K Bytes

$29,360 1/128

Scheme II $2591 8.85

1/256

Scheme II $1039 3.54

128K Words

1,024K Bytes

$58,720 1/256
Scheme I $2496 4.25

1/512

Scheme I $944 1.61 128K Words

1,024K Bytes

$58,720 1/256

Scheme II $2600 4.45

1/512

Scheme II $1046 1.78

256K Words

2,048K liytes
$117,440 1/512

Scheme I $2500 2.14

1/1024

Scheme I $951 0.8 256K Words

2,048K liytes
$117,440 1/512

Scheme II $2606 2.22

1/1024

Scheme II $1053 0.9

www.manaraa.com

Table II. Cost Analysis

Main Memory (Core) 0,7ç/blt
Buffer (Semiconductor) 4^/bit
Buffer Directory lOç/bit
Priority Update List lOç/bit

Main I'Cemory Buffer Size 128 nlop.lfs

Capacity Cost
Block Size = 8 Words Block Size = 4 Words

Capacity Cost Fraction

of Main
Cost % of

Main

Fraction

of Main
Cost % of

Main

32K Words

256K Bytes
$14,680 1/32

Scheme I $3990 27.2
1/64 .

Scheme I $1793 12.2 32K Words

256K Bytes
$14,680 1/32

Scheme II $4195 28.6

1/64 .

Scheme II $1997 13.5

64K Words

512K Bytes
$29,360 1/64

Scheme I $4005 13.7

1/128

Scheme I $1806 6.15
64K Words

512K Bytes
$29,360 1/64

Scheme II $4210 14.3

1/128

Scheme II $2010 6.85

128K Words

1,024K Bytes
$58,720

1/128
Scheme I $4020 6.55

1/256

Scheme I $1819 3.1
128K Words

1,024K Bytes
$58,720

1/128

Scheme IX $4225 7.25

1/256

Scheme II $2023 3.46

256K Woxds

2,048K Bytes
$117,440 1/256

Scheme I $4035 3.45
1/512

Scheme I $1832 1.5 256K Woxds

2,048K Bytes
$117,440

Scheme II $4240 3.53 Scheme II $2036 1.75

www.manaraa.com

Table III, Cost Analysis

Main Memory (Core) 0.7<?/blt
Buffer (Semiconductor) 4o/blt
Directory 10<~/bit
Priority Update List lOo/bit

Main Memory Buffer Size = 256 Blocks

Capacity Cost B Lock Size = 8 Words Block Size = 4 Words Capacity Cost
Fraction

of Main
Cost % of

Main
Fraction
of Main

Cost % of
Main

32K Words

256K Bytes
$14,680 1/16

Scheme 1 $7036 48
1/32

Scheme I $3541 24.2
32K Words

256K Bytes
$14,680 1/16

Scheme II $7446 • 51

1/32

Scheme II $3855 26.2

64K Words

512K Bytes
$29,360 1/32

Scheme I $7060 24
1/64

Scheme I $3567 12.2
64K Words

512K Bytes
$29,360 1/32

Scheme II $7470 25.5

1/64

Scheme II $3881 13.0

128K Woi ds

lo24K BytCiS
$58,720 1/64

Scheme I $7085 ? 12.5

1/128

Scheme I $3593 6.1 128K Woi ds

lo24K BytCiS
$58,720 1/64

Scheme II
$7495 - 12.75

1/128

Scheme II $3907 6.6

256K Words

2,048K llytes
$117,440

1/128

Scheme I $7120 " 6 .1

1/256

Scheme I $3619 3.1 256K Words

2,048K llytes
$117,440

1/128

Scheme II $7520 ^6.4

1/256

Scheme II $3933 3.3

www.manaraa.com

119

Keeping the main memory size fixed and increasing (de­

creasing) the buffer size increases (decreases) the % of buf­

fer cost (as compared to the main memory cost) linearly.

As was observed in chapter IV, 6U blocks for the whole

buffer for SYHBOL-IIB like computing structures would be more

than enough for yielding a high hit-ratio. Prom the cost

analysis we see that for a main memory of 256K words or 512K

bytes (8 times the capacity of the present SIHBOL-IIR main

memory) this buffer of 64 blocks would constitute only about

9X of the main memory cost and still would give hit-ratio

very close to unity.

This illustrates the tremendous cost effectiveness of

buffering STHBOL-llR like computing structures.

www.manaraa.com

120

CHAPTER VI. COHCLOSION AHD DISCUSSIONS

With the advancement of the LSI technology and the

persistent decline in the cost of hardware (with a consistent

increase in the cost of software) more and more emphasis and

thought have been (and will be) given to reexamining the tra­

ditional hardware/software boundary. This resxamination has

led (and will lead) computer system designers to use as much

hardware as possible to reduce the whole system programming

cost and to obtain better performance. SÏHBOL-IIR computing

system is one of the results of this reexamination.

This thesis has explored the applicability of buffering

such multidedicated processors, time-sharing systems. It is

seen that the architectural organization of the whole system

has tremendous impact on the organization and management of

its buffered memory systems. Three alternative ways of pro­

viding buffer—a buffer for the whole system, buffers for the

terminals or buffer for each dedicated processor are investi­

gated and it is demonstrated that allocating a small,

dedicated but sharable buffer to its different dedicated

processors would result in a significant increase in perform­

ance with a very insignificant increase in the cost.

Fig. 25 and Fig. 33 are the most important results of

the whole investigation. From Fig. 25 we see that, a buffer

of only 2K bytes yields a hit-ratio of 97%. In this case,

small dedicated but sharable buffer space is provided for

www.manaraa.com

121

each dedicated processor. Also from Fig. 25 we see that

there is an optimum buffer size of 32 blocks for SYMBOL-IIR

like computing structures. Allocating larger buffer sizes to

different dedicated processors and thus exceeding the total

capacity of 32 blocks does not result in any increase of

performance—rather the hit-ratio tends to decrease.

From Fig. 33 we see that providing small additional buf­

fer space for the data linking words and the system and ter­

minal header words results in an incredible hit-ratio—99.7%.

The buffer can be visualized now as consisting of a data

buffer, a data linking buffer and sytsem and terminal header

buffer. Achievement of such high hit-ratio with such a small

buffer illustrates the effectiveness of dedicated and

sharable buffer for a highly unconventional computing struc­

tures like SÏMBOL-IIB.

Also it is seen that, for SYHBOL-IIR like computing

structures, the behaviour (i.e., the address reference pat­

tern) of processors is tremendously affected by the storage

organization and management of its virtual memory system and

it is seen from Fig. 17 and Fig. 21 that the address

referencing pattern is more important than the total amount

of activity of the processor. This observation leads to one

of the very important conclusion that the over all hit-ratio

would not be affected very much by the variation of the users

environments. Depending upon the size and type of programs.

www.manaraa.com

122

the total amount of activity of different processors might

vary, but as the basic behaviour of different dedicated proc­

essors would essentially remain the same, there would be only

small perturbation on the over all hit-ratio. Because of

this important observation, even though the experimental in­

vestigation was limited only to small scientific users envi­

ronments, we can boldly predict that the results obtained ia

this investigation are extendable to other different environ­

ments. However for conventional computer systems, the hit-

ratio data is affected very strongly by the behaviour of pro­

grams and users environments (2,14,17,18).

Also it is shown that for SYHBOL-IIR like computing

structures, besides the principle of "locality" its

architectural organization and over all storage management

has significant impact upon the organization and management

of its buffered memory—and hence the results of this inves­

tigation could be extendable to future computer systems

consisting of multi homogeneous or heterogeneous processors-*-

as long as those systems would have the similar storage

management principles of SïHBOL-IIB system.

This concept of small, multidedicated buffer for

multidedicated processors for SïMBOL-IIB like computing

structures leads also to one of the very important system

concepts that—instead of all the dedicated processors shar­

ing the same common memory, if small dedicated fast memories

www.manaraa.com

123

are provided for these processors and if the auxiliary memory

is quite fast enough to transfer data at reasonable fast

rate, then the whole main memory could be completely

eliminated.

How according to many computer experts, P and H channel

nos will dominate the computer main frame memories, taking

nearly 60% of total bits by the late 1970s. Core which had

100 percent of main frame memory in 1960 had declined to

about 79% in 1972, about 65% in 1973 and is projected to have

less than 10% by 1980.

Even if HOS memory replaces core as the main frame memo­

ry, for larger systems the hybrid approach—or the approach

of buffering—a slow large HOS memory supported by a fast,

small bipolar memory would seem to be the best solution.

At least for another decade, the approach of buffering

is going to stay and if future systems tend to achieve

multiprocessing by the use of multidedicated processors—then

separate dedicated buffers for these dedicated processsors

would be the best and cheapest way of improving the perform­

ance.

But it should be mentioned that buffering is no solution

to a virtual memory system which is limited by the page traf­

fic between its main memory and the auxiliary memory. Hence

when we are talking about buffering a virtual memory system

like SYMBOL-IIR we are implying that the system has the

www.manaraa.com

124

provision of a large main memory and the system performance

is not limited by the page traffic but the spaed of the main

memory. In systems like that buffering is the cheapest and

most effective way for improving the performance at very

insignificant increase in cost.

www.manaraa.com

125

ACKN08LEDGHEHTS

I am deeply indebted to my major professor Dr. Arthur V.

Pohm for introducing me to the subject of buffered memory

systems and for his constant advice, guidance and

encouragement during the preparation of this dissertation.

I would also like to express my deep gratitude to Dr.

Roy J. Zingg for giving me an opportunity to work on the

SYMBOL-IIR project and for his valuable suggestions and

encouragements during the pursuit of this investigation.

I have also benefitted greatly from conversations with

numerous colleagues involved in the SYMBOl-IIR project. In

particular special mention must be made of Perry Hutchison

who besides investing his time in reading this thesis and

giving some pertinent comments was immensely helpful in run­

ning the experimental simulation work. I am thankful to

other members of the SYMBOL-IIR project for their kind

cooperation for letting me use the system for a horrendous

amount of time.

I am also very grateful to Ralph Luckeroth and Gary

Andrews for their big help in constructing the interface

unit.

I would like to express my appreciation to the

Engineering Research Institute of Iowa State University and

www.manaraa.com

126

National Science Foundation for supporting my research work.

Last, but not the least, I am extremely grateful to my

parents and all the other members of the family, back in

India, for their love, encouragement, patience and under­

standing.

www.manaraa.com

127

BIBUOGBAPHT

1. Arora, S, B., and Ha, F. L. "Statistical Quantification
of Instruction and Operand Traces." Statistical Computer
Performance Evaluation. Edited by Walter Freiberger.
New York: Academic Press, Inc., 1972.

2. Baer, J. L., and Sager, G. B. "Measurement and Improve­
ment of Program Behaviour under Paging Systems." Statis­
tical Computer Performance Evaluation. Edited by Walter
Freiberger. He* York: Academic Press, Inc., 1972.

3. Bell, C. G., and Casasent, D. "Implementation of a Buf­
fer Memory in Hi ni-Computers." Computer Design, (Novem­
ber,1971), 83-89.

4. Bell, J., Casasent, D., and Bell, C. 6. "An Investiga­
tion of Minicomputers Cache Scheme." RCA Report
H-72-190.

5. fiersamian, H., and Decegama, A. L. "System Design Con­
siderations of Cache Memories." Con-Comp Conference,
(1972), 107-110.

6. Belady, L. A. "A Study of Replacement Algorithms for
Virtual Storage Computers." IBM Systems Journal, 5, No.
2 (1966), 78-101.

7. Belady, L. A. "Biased Replacement Algorithms for Multi­
programming." Report NC697. Yorktown Heights, New York;
IBM, T. J. Watson Research Center, March,1967.

8. Bloom, L., Cohen, M., and Porter, S>. "Consideration in
the design of a Computer with high logic to memory speed
ratio." Proc. Gigacycle Computing Systems, AIEE Special
Publication S-136, (Jan""29~- Fib~27l952r7'53-63.

9. Cohen, C. "Japan is packing everything into large Com­
puter Project." Electronics. tU, No. 11 (May 24,1971),
42-49.

10. Conti, C. J. "Concepts of Buffer Storage," IEEE Com­
puter Group News, 2, No. 5 (March,1969) , 6-13.

11. Denning, P. J. -Ike mocklay Sat Hoùêl Ol FZûyZâ*
Behaviour." Comm. ACM. 11, No. 5 (May,1968), 323-333.

12. Denning, P. J. "Resource Allocation in Multiprocess
Computer Systems." Tech. Report. MAC-TR-50, MIT Project

www.manaraa.com

128

MAC, Cambridge, Mass., 1968.

13. Denning, P. J. "Thrashing : its Causes and Prevention."
Proc. AFIPS Fall Joint Coaput. Conf., 33 (1968),
915-922.

14. Fine, 6. H., Jackson, C. I., and Mclssac, P.V. "Dynamic
Program Behaviour under Paging." BatignaljConf. ACH
Proc.. ACM Publications P-66, 21 (Î966) , 223-228.

15. Gibson, D. H. "Considerations in Block Oriented Systems
Design." ProCi_lFIPS_S££ina_Joint_com2Uti^Conf., 30
(1967), 75-80.

16. Gibson, D. H., and Shevel, 9. L. "'Cache* turns up a
Treasure," Electronics, 42, Mo. 11 (October 13,1969),
105-107.

17. Hatfield, D. J. "Program Restructuring for Virtual Mem­
ory. " IBM Systems Journal, 10, No. 3 (1971), 168-192.

18. Hatfield, D. J. "Some Experiments on the Relationship
Between Page Size and Program Access Pattern," IBM
Journal of Res, and Dev., 16, No. 1 (January,1972),
58-667

19. Kaplan, K. R., and Winder, R. 0. "Cache Based Computer
Systems." Computer. 10, No. 3 (March,1973), 30-36.

20. Kilburn, T., Edwards, D. B. 6., Lanigan, H. G., and
Sumner, F. H. "One level Storage System." IRE Trans,,on
Computer. EC-11, April, 1962, 223-238.

21. lee, F. F. "Look Aside Memory Implementation." Memo­
randum, MAC-M-99, August, 1963, 1-3.

22. Lee, F. F. "Look Aside Memory Simulation." Memorandum,
MAC-M-131, January,1964,1-4.

23. Lee, F. F. "Study of Look Aside Memory." IEEE Trans.
on Computers, 18, No. 11 (November,1969), 1062-1Ô64.

24. Liptay, J. S. "Structural Aspects of the System/360
Model 85; II The Cache." IBM Systems Journal. 7, No. 1
(1968), 15-21.

25. Madnick, S. E. "Storage Hierarchy Systems." Tech.
Report. MAC-TR-117, MIT Project MAC, Cambridge, Mass.,
1973.

www.manaraa.com

129

26. Hattson, B. L. "Evaluation of flulti Level Memories."
IEEE Trans, on Magnetics. 7, Ho. 4 (December,1971),
814-819.

27. Mattson, E. L., and Traiger, I. L. "Storage Hierarchy
Design." IEEE Trans. on_Magnetics, 7, Ko. 3 (September,
1971), 145-148.

28. Hattson, B. L., Gecsci, J., Slutz, D. B., and Traiger,
I. L. "Evaluation Techniques for Storage Hierarchies."
IBM Systems Journal, 9, Ho. 2 (1970), 78-117.

29. Meade, B. M. "On Memory System Design." Proc. AFIPS
Fall Joint Comput. Conf. , 37 (1970), 33-43.

30. Meade, B. M. "Design Approaches for Cache Memory Con­
trol." Computer Design. (January,1971), 87-93.

31. Meade, B. M. "How a Cache Memory Enhances a Computers
Performance." Electronics, 45, Ho. 2 (January, 1972),
58-63. "

32. Hisenoff, N. "Hardware for Information Processing
Systems: today and in the Future." Proc. IEEE, 54, Ho.
12 (December,1966), 1820-1835. "

33. Pohm, A. V. "Competitive High Speed Memory
Technologies." IEEE Trans. on Magnetics, 8, Ho. 4 (De­
cember,1972), 888-893.

34. Pohm, A. v. , Agrawal, 0. P., Cheng, C. W., and Shimp, A.
"An Efficient Flexible Buffered Memory System." IEEE
Trans, on Magnetics. 9, Ho. 3 (September,1973), 173-Ï79.

35. Pohm, A. V., Agrawal, 0. P., and Cheng, c. w.
"FabritTek Buffered Memory study." Interim Beport. Pro­
ject 963-s. Iowa State Oniv., August, 1972.

36. Bice, a. , and Smith, ï. B. "Symbol - A Major Departure
From Classic Software Dominated Computing Systems."
Proc. AFIPS Spring Joint Comput. Conf., 38 (1971),
575-587.

37. Bichards, H. Jr, and Zingg, B. J. "The Logical Struc-
* • — — ̂ * ' — ** ̂ —• — — — — M —w — • — — ̂ — M JS JU V mm 0#
tULK UJL tae DOMUJbj xu cue

Special Beport. HSF-OCA-GJ33097-CL7307. Cyclone Comput­
er Laboratory. Iowa State University, Hovember, 1973.

38. Smith, 0. B., Bice, B., Chesley, G. D., Laliotis, I. A.,

www.manaraa.com

130

Landstroa, S. F., Calhoun, H. A., Gerald, L. D., and
Cook, T. G. "SYMBOL-A Large Experimental System
Exploring Major Hardware Replacement of Software." Pros,
AFIPS Spring Joint Comout. Conf., 38 (1971), 601-616,

39. Takahashi, S., Nishino, H., Yoshihiro, K., and Fuchi, K.
"System Design of the ETL Mk-6 computer." Proc. IFIPS
Congress, (1962), 690-693.

40. Traiger, I. L., and Hattson, B. L. "The Evaluation and
Selection of Technologies for Computer Storage Systems."
Proc. of AIP conf. on Magnetism and Magnetic Materials,
17, Ho. 5 (1972), 1-12.

41. Traiger, 1. L., and Mattson, R. L. "One Pass Techniques
for the Evaluation of Memory Hierarchies." IBM Research
Report, RJ-892, 1971.

42. Tsao, R. F., Comeau, L. W., and Marolin, B. H. "A Multi
Factor Paging Experiment: 1 The Experiment and Conclu­
sions." Statisti2al_Ggm2uter_PerformanGe_EvalMtioni
Edited by Walter Freiberger. New York; Academic Press,
Inc., 1972.

43. Tsao, R. Fé, and Margolin, B. H. "A Multi Factor Paging
Experiment: II statistical Methodology." Statistical
Computer Performance Evaluation. Edited by Walter
Freiberger. New York: Academic Press, Inc., 1972.

44. Wilkes, M. ¥- "Slave Memories and Dynamic Storage Allo­
cation . " IEEE^rans^_aa_Eleçtronic_ComEuters, 14 (1965) ,
270-271.

45. Zingg, R. J., and Richards, H. Jr. "SYMBOL: A System
Tailored to the Structure of Data." Special Report.
ISD-CCL-7302. Cyclone Computer Laboratory. Iowa State
University, January, 1973.

	1974
	Applicability of buffered main memory to SYMBOL-IIR like computing structures
	Om Prakash Agrawal
	Recommended Citation

	tmp.1412958604.pdf.xSPQV

